Хелбинг, Трейбер и Ансгар Хеннеке из Штутгарта попытались оценить как ведет себя описываемый ими флюид при дополнительных возмущения: транспортного потока в виде подъемов или боковых въездов. Они изучи ли процесс развития локализованной волны «стеснения» транспортное потока перед подъемами, особенно движение такой волны против общегі направления движения. При низкой или умеренной интенсивности поток пробка быстро рассасывается, но при повышении плотности даже небольшая пробка может вызвать значительные и разнообразные изменения в режиме Наблюдались волны пробок, распространяющиеся в свободном потоке; не прерывно возникающие волны сжатия (исследователи назвали этот режш «осциллирующим тесным трафиком»); стеснения на подъемах; однородны] тесный поток и другие режимы.
Рис. 7.7. Диаграмма состояний «транспортного флюида» в модели Хелбинга и его сотрудников. Однородный тесный трафик представляет собой сплошную дорожную пробку, непрерывно увеличивающуюся в д лину. При осциллирующем тесном трафике такая пробка может растягиваться и сжиматься, в результате чего отдельные водители вынуждены регулярно ускорять или замедлять скорость движения. Движущиеся локализованные кластеры выступают в качестве «узлов» плотности, которые перемещаются против общего направления потока Переключения в режиме «Стоп — вперед» описывают состояние системы, когда такие узлы выбрасывают кластеры меньшей плотности, движущиеся вдоль направления движения до «столкновения» с другим узлом, движущимся против потока Локальные «остронаправленные» кластеры представляют собой «застрявшие» в потоке узлы, в которые машины могут въезжать и выезжать без изменения общей картины.
Обнаруженные режимы движения исследователи представили в вид своеобразной фазовой диаграммы, демонстрирующей область существование каждого из них (рис. 7.7), которая выглядит прямой аналогией описанны: в гл. 5 «морфологических диаграмм» колоний бактерий. Это заставляет на еще раз вспомнить, что дорожное движение, как и рост бактерий, относите к неравновесным процессам. Переходы между различными режимами внов происходят совершенно неожиданно, как только «контрольные параметры системы (в нашем конкретном случае — плотность потока по основной магистрали и нарушения на подъемах) превышают некоторые критические значения. Короче говоря, изменения режимов движения для транспортных потоков выглядят как последовательность неравновесных фазовых переходов.
БУДУТ ЛИ ТРАНСПОРТНЫЕ ПРОБКИ ЗАВТРА?
Разумеется, читатель вправе задать резонный вопрос, предсказывают ли эти разнообразные модели реальное поведение транспорта или они являются всего лишь очередной, хотя и довольно забавной, компьютерной игрой? Естественно, эффективность моделирования может быть проверена лишь сравнением прогнозов с реальностью, для чего Хелбинг, Трейбер и Хеннеке сверили свои прогнозы с фактическими показателями транспортного движения, полученными с использованием датчиков на многих скоростных автострадах Германии и Голландии, и были приятнѳ удивлены тем, что практически все предсказанные режимы действительно обнаруживаются в транспортных потоках. Более того, выяснилось, что, вводя в модель некоторые дополнительные поправки, например, учитывая соотношені между числом легковых и грузовых машин, удается получить высокото ный прогноз движения на несколько часов даже в сложных и нерегулярнь ситуациях (рис. 7.8).
Время (часы) Время (часы)
Рис. 7.8. Предложенная группой Хелбинга модель дорожного движения позволя предсказывать развитие ситуации на скоростных магистралях в течение нескольк часов. В модель закладываются измеренные данные о плотности потока и скорос в некоторой начальной точке маршрута, а затем по этим данным прогнозирует состояние потока (плотность и скорость) на трассе. Показаны прогнозы (на ср 2,5 часа) скорости и плотности для двух участков скоростного шоссе А5 в райе Франкфурта. Причиной пробок практически всегда являлись сужения проезж части на некоторых участках. Предсказываемое моделью состояние движен описывается пунктирными линиями, а сплошные линии соответствуют реальн обстановке, регистрируемой при помощи системы датчиков, установленных вде трассы. Легко заметить, что расчетные данные отличаются от измеренных толі в деталях, а общая картина движения, включая время и место образования проб воспроизводится моделью достаточно BepHQ.