Кто-то может заключить, что в основе этого лежит некий меритократи- ческий принцип, т. е. большее количество цитирования, большее число посещений сайта или более частое появление актера на экране свидетельствуют лишь о том, что именно эта научная статья, сайт или актер действительно являются хорошими. Но это далеко не всегда так. Слава притягивает, но сама слава бывает хорошей или дурной, обе в равной степени привлекательны. Думаю, читатели не затруднятся поиском собственных примеров этого.
Возвращаясь к научной стороне вопроса, отметим, что если бы каждый растущий граф имел тенденцию только к увеличению числа связей на уже самых связных вершинах, то рост должен был бы закончиться вовсе не безмасштабной сетью, а централизацией всех связей на одной-единственной вершине. Однако это практически никогда не происходит в растущих без плана сетях, что и наводит на мысль о еще каком-то механизме регулирования. Например, можно сразу отметить, что в очень больших, разросшихся графах ситуация изменяется, поскольку новой вершине очень трудно «найти» наиболее связную вершину, вследствие чего повышается вероятность связи с одной из менее загруженных вершин. Это обстоятельство прекрасно иллюстрируется ситуацией в мире кино: самые известные звезды не в состоянии сниматься подряд во всех новых фильмах. Таким образом, стремление к созданию связей с наиболее связной вершиной сети выступает не правилом, а лишь тенденцией, вероятностным смещением развития в определенную сторону.
Барабаши и Альберт смогли показать, что эта тенденция — лишь одна из особенностей роста безмасштабных сетей. Они предложили рассмотреть граф, растущий за счет добавления новых вершин, каждая из которых связывается с уже имеющимися вершинами случайным образом, но с некоторым предпочтением, которое отдается при этом более связным вершинам. Как оказалось, при этом образуется безмасштабная сеть. Рост многих финансовых и общественных организаций происходит по принципу «богатые всегда становятся еще богаче». Например, более крупные фирмы с большей вероятностью (хотя и не всегда) привлекут новых клиентов, что, кстати, частично объясняется и тем, что они могут обеспечить себе лучшую рекламу, т.е. создать больше «славы».
Аналогия станет яснее, если учесть, что в некоторых случаях число связей вершины может быть непосредственно связано с «богатством», например, если рассматривать связность вершины в качестве показателя числа связанных с фирмой клиентов. Если в обществе существует свобода выбора, а возможности фирмы привлечь новых клиентов зависят от числа уже имеющихся клиентов, то степенное распределение неравенства станет весьма вероятным исходом. Конечно, на любом свободном рынке имеются различия, например, в доступности ресурсов для разных торговцев, но процесс безмасштабного роста будет быстрее усиливать неравенство участников по сравнению со случайным распределением богатства. Результатом такого развития может стать заметное число «особых случаев» — очень богатых индивидов или чудовищных по размеру компаний. Социолог Джордж Кингсли Ципф еще в 1930-х годах указывал, что почти всегда в общественных явлениях мы наблюдаем действие степенного закона распределения по размеру компаний (гл. 11), городов и доходов (гл. 10).
Из этого не следует, что степенной закон неравенства неизбежен при свободном рынке. Но если мы сочтем такое неравенство нежелательным, нам скорее всего придется несколько ограничить те самые свободы, на которых построена деятельность рынка.
Следует, однако, отметить, что подобный рост сетей далеко не всегда приводит к такому большому неравенству. Джен Стэнли из университета Бостона, изучив роль и возможности безмасштабных сетей, описанных Бара- баши и Альберт, обнаружил ограниченность их применимости. Возьмем для примера уже привычную сеть киноактеров. Степенной закон распределения предсказывает наличие нескольких знаменитостей с огромным количеством связей, однако это не так, количество связей даже наиболее востребованных актеров заметно ниже предсказанного теорией (рис. 16.7)[143]
.Рис. 16.7. Киноактеры с наибольшим количеством связей не вписываются в степенную зависимость, характеризующую всех прочих актеров, — те из них, кто имеет более трехсот совместных работ, обладают существенно меньшим количеством связей, чем предсказывает степенной закон. Другими словами, существует верхний предел совместных работ, в которых может принимать участие актер.