Если плотность движения возрастает, но оставляет водителям достаточно места для различных маневров, то и величина потока в целом увеличивается, так как, образно говоря, в каждом километре шоссе помещается больше машин, которые могут двигаться, не сбавляя скорости, и соответственно проходить контрольные точки в большем количестве. Этот режим движения можно назвать свободным потоком. При дальнейшем увеличении плотности машин становится столь много, что водителям приходится уже учитывать наличие соседей и соответственно тормозить, избегая столкновений, в результате чего возрастание плотности потока компенсируется снижением его общей величины. Затем при некоторой «критической» плотности характер движения существенно изменяется, а при дальнейшем повышении плотности величина потока начинает резко уменьшаться (как показано на рис. 7.1), что соответствует переходу от «свободного» режима движения к «тесному».
РИСК И СЛУЧАЙНОСТЬ
В следующей модели дорожного движения, предложенной Нагелем и Майей Пажуски в 1995 году, значение скорости, выбранное каждым водителем, продолжает затем по возможности сохраняться неизменным, что несколько напоминает систему автоматического управления скоростью (cruise-control), применяемой в некоторых автомобилях. В этих условиях процесс перехода от свободного потока к тесному как бы откладывается или даже отменяется, и после достижения критической плотности поток остается свободным, а его величина увеличивается с ростом плотности, как и раньше (рис. 7.1). Ситуация вновь выглядит так, как если бы все водители вдруг «сговорились» вести себя определенным образом, т. е. коллективно решили смириться с некоторым
Критическая Плотность
Рис. 7.1. Зависимость величины транспортного потока от его плотности. Выделяется точка перехода от свободного потока к тесному, цосле которой повышение плотности сопровождается снижением величины потока, так как в этом режиме водители вынуждены уменьшать скорость. Выше критической точки существует также режим метастабильного «свободного» потока, показанный пунктирной линией.
Как видно из рисунка, в модели с контролем скорости критическая плотность выступает в качестве точки бифуркации, в которой становятся возможными два режима. Один из них выглядит более безопасным — все водители сбрасывают скорость, а второй несколько напоминает азартную игру, при которой все водители несутся, как прежде. До того момента, пока у кого-то из участников этой игры не сдадут нервы или не ослабнет концентрация внимания, рискованный режим позволяет обеспечить очень высокую скорость движения без столкновений. Однако это очень опасное и рискованное предприятие. Стоит хотя бы одному участнику гонки притормозить, как вынужден будет тормозить едущий следом, второй, третий, и вот в мгновение ока весь этот высокоскоростной транспортный поток превратится в тесно утрамбованное, вяло ползущее скопище. Разумеется, сохраняющие высокую скорость водители
Возникшее при этом состояние является настолько хрупким, что оно может разрушиться при малейшем «провокационном» воздействии. Любая случайная флуктуация может мгновенно инициировать Великий А-Бумм т. е. перевести поток в другое, «тесное» состояние. Иными словами, описываемый нами режим не стабилен, и физики, которые постоянно сталкиваются с такими состояниями, присвоили им название метастабильных. Метастабильность вовсе не эквивалентна нестабильности, это состояние может длиться довольно долго, даже сколь угодно долго, если никто не примется вдруг «раскачивать лодку».