Читаем Кто есть кто в робототехнике. Выпуск I. Компоненты и решения для создания роботов и робототехнических систем полностью

Для простоты предположим, что наш GPS приёмник оперирует информацией о местоположении относительно данного исходного пункта в форме «XY» (рис. 1.2). Координаты местоположения точки, к которой роботу необходимо двигаться – (Xg, Yg), а текущие координаты робота, снабженного GPS приемником – (Xr, Yr). Вычитание координат показывает, насколько робот должен изменить своё текущее положение (Х, Y), чтобы достичь расположения цели. Таким образом, Х = Xg – Xr, и Y = Yg – Yr.

Рис. 1.2. Это исходное положение робота, использующего информацию, обеспеченную системой позиционирования. За основу для вычисления курса берётся безотносительное (абсолютное) местоположение робота и цели. Электронный компас (увеличенный вид компаса – слева) позволит роботу следовать найденным курсом

Мы используем систему координат, привязанную к географии Земли, как показано на рисунке, с осью X, направленной на север. Чтобы достичь точки расположения цели, мы должны сделать возможным движение робота по курсу под углом  относительно оси X. Элементарная тригонометрия сообщает нам, что угол, под которым мы должны двигаться, определяется из арктангенса изменений в положении «X» и «Y», то есть:  = tan-1 (Y/X).

Недостаточно знать только абсолютную позицию нашей цели и абсолютную позицию робота; мы должны также знать направление движения робота. Знание о направлении и величине поворота является сущностью самонаведения: требуемый поворот в движении есть разница между курсом, которым робот в настоящее время следует и курсом, по которому мы хотим, чтобы робот следовал.

GPS обеспечивает информацию о местоположении, но непосредственно не дает нам курс робота. Электронный компас поможет заполнить этот пробел. Чтобы направиться к цели, робот поворачивается до тех пор, пока курс, обозначенный компасом, не будет соответствовать требуемому курсу. Робот продолжает раз за разом «консультироваться» с GPS приемником по поводу безотносительного местоположения, вычисляя курс от абсолютных координат местонахождения цели: вычисляет требуемый курс, поворачивается по направлению к цели и продвигается, сокращая расстояние между собой и целью.

Итак, мы справились с проблемой перемещения нашего робота точно к месту и хотим его туда направить? Не совсем. Прежде, чем мы сможем успешно использовать информацию об абсолютном местонахождении, необходимо победить еще одного злодея, который затаился в засаде, готовый наказать новичков. Имя злодея – разрешение. Смотрим рис. 1.3.

Рис. 1.3. Заманчиво воображать, как показано на «а», что система позиционирования установит таблицу координат и, по мере того как наш робот путешествует, система позиционирования будет сообщать ему, которую из ячеек таблицы он занимает. К сожалению, разрешение (также как шум и другие ошибки) ограничивает способность любой системы позиционирования функционировать таким образом. Если разрешение нашей системы позиционирования – R, то при ограничении разрешения будут сомнения в любом измерении координат, сообщенном системой, по крайней мере, на величину ± R. Это означает, что в отличие от координат пикселя на экране компьютера, координаты робота, вычисленные системой позиционирования, можно воспринимать только как предположительные. Пример этого показан в форме чисел на «b». Когда робот занимает определённую ячейку таблицы координат в реальном мире, система позиционирования может сообщить, что робот находится в другой ячейке. То, как ячейки словно блуяздают в разные стороны от их фактических положений, показано на «с» – и они блуяздают непрерывно. Безотносительное позиционирование робота построено на этой сомнительной основе.

Каждая система позиционирования может точно измерить местоположение до некоторого минимума расстояния, но никак не меньше. Например, вы можете использовать линейку длиной в ярд, чтобы измерить расстояние всего в 1/16 дюйма. Но вы не можете использовать эту линейку, чтобы измерить толщину листа бумаги. Такие маленькие расстояния меньше предела разрешения данной линейки. Аналогично, вы не можете использовать одометр вашего автомобиля, чтобы измерить диаметр баскетбольного мяча. И так же за пределами своего разрешения ни одна система позиционирования не выдаст значащую информацию. Таким образом, первый вопрос к любой системе позиционирования – каково её разрешение?

В зависимости от обстоятельств, предел разрешения обычного GPS приемника часто не лучше порядка 10 метров. (Хотя прибор может сообщать о своём местоположении до милиметра, цифры на дисплее есть ложная точность, так как они не последовательны во времени.) Предположим, что мы пытаемся использовать такой приемник (наряду с электронным компасом), чтобы указать роботу путь в соответствии с безотносительным местоположением. Мы используем следующую программу «нацеливания» на требуемое XY-местоположение, выраженное как Dest_vec.

Поведение Home_GPS

Loc_vec = get_GPS_xy // GPS выдаёт текущий вектор местоположения

Disp_vec = Dest_vec – Loc_vec // Вектор смещения (displacement) к месту назначения (destination)

Перейти на страницу:

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука
Металлоискатели
Металлоискатели

Книга предназначена для радиолюбителей, интересующихся вопросами поиска различных металлических предметов с помощью специального оборудования, к которому, в первую очередь, относятся металлоискатели.В соответствующих разделах приведены принципиальные схемы и рисунки печатных плат как простых, так и более сложных конструкций. Даны рекомендации по самостоятельному изготовлению и настройке металлоискателей, а также советы по их практическому применению.Настоящее издание будет полезно не только подготовленным радиолюбителям, но и всем читателям, интересующимся данной темой, поскольку большинство представленных конструкций может изготовить как взрослый, так и школьник, никогда не державший в руках паяльник.

Михаил Васильевич Адаменко

Радиоэлектроника / Технические науки / Образование и наука
Введение в Саентологическую Этику
Введение в Саентологическую Этику

Можете ли Вы устранить препятствие с пути к свободе?У человека никогда не было возможности справиться с последствиями совершенных им плохих поступков или сказать с уверенностью о том, какие решения обеспечат прекрасное будущие.Но теперь эта возможность существует.Вы можете изучить технологию этики, которая дается в этой книге, и уверенно идти по дороге к свободе.То, что описано в этой книге, — это не что-то, что другой человека делает для вас. Это ваше личное дело. Внимательно изучите эти данные и применяйте их, чтобы быть своим собственным советчиком и оставаться верным своим собственным целям.Мир может стать довольно диким, но, полностью понимая саентологическую этику и правосудие, вы будите точно знать. как внести порядок в свою жизнь и жизни окружающих вас людей.Применяйте знания, содержащиеся в книге «Введение в саентологическую этику», — и вы всегда будите преуспевать.

Л. Рон Хаббард , Рон Лафайет Хаббард

Религия, религиозная литература / Технические науки / Обществознание / Прочая научная литература / Эзотерика
Всевидящее око фюрера
Всевидящее око фюрера

Книга посвящена деятельности эскадрилий дальней разведки люфтваффе на Восточном фронте. В отличие от широко известных эскадр истребителей или штурмовиков Ju-87, немногочисленные подразделения разведчиков не притягивали к себе столько внимания. Их экипажи действовали поодиночке, стараясь избегать контакта с противником. Но при этом невидимая деятельность разведчиков оказывала огромное влияние как на планирование, так и на весь ход боевых действий.Большая часть работы посвящена деятельности элитного подразделения люфтваффе – Aufkl.Gr.Ob.d.L., известной также как группа Ровеля. Последний внес огромный вклад в создание дальней разведки люфтваффе, а подчиненное ему подразделение развернуло свою тайную деятельность еще до начала войны с Советским Союзом. После нападения на СССР группа Ровеля вела разведку важных стратегических объектов: промышленных центров, военно-морских баз, районов нефтедобычи, а также отслеживала маршруты, по которым поставлялась союзная помощь (ленд-лиз). Ее самолеты летали над Кронштадтом, Севастополем, Москвой, всем Поволжьем, Уфой и Пермью, Баку, Тбилиси, даже Ираном и Ираком! Группа подчинялась непосредственно командованию люфтваффе и имела в своем распоряжении только лучшую технику, самые высотные и скоростные самолеты-разведчики.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука