Читаем Кто есть кто в робототехнике. Выпуск I. Компоненты и решения для создания роботов и робототехнических систем полностью

Dist = magnitude(Disp_vec) // Расстояние (distance) до места назначения

Theta = arctan_vec (Disp_vec) // Вектор смещения определяет требуемый курс

Heading = Get_compass_heading // Получите от компаса фактический курс робота

If (Dist /= 0) // Мы достигли места назначения?

Rotation = gl * (heading – theta) // Рассчитайте параметры поворота

Translation = g2 * Dist // Рассчитайте скорость перемещения

end if

end Home_GPS

Что случится, когда робот поведёт себя именно так? Если его движение моделировать на компьютере, Home_GPS заставит виртуального робота повернуться к точке назначения, движение пойдёт гладко, и всё закончится, когда робот достигнет точного места, указанного Dest_vec. Но, управляющий физическим роботом в реальном мире, Home_GPS не сможет достичь места назначения. Вместо этого, чем больше робот будет приближаться к цели, тем более растерянным он начнёт казаться.

Пока он далёк от цели, физический робот ведет себя почти таким же образом, как его виртуальный собрат, перемещающийся целенаправленно к месту назначения. Но когда робот прибудет в зону в пределах 10–20 метров от цели, предел разрешения GPS системы вызовет хаос в системе управления поворотно/поступательным движением, описанной выражением Home_GPS.

В какую-то секунду прибор GPS может сообщить роботу, что он находится именно в той самой ячейке таблицы, которая и есть место назначения. Но в следующую секунду прибор сообщит, что робот находится в ячейке слева и поэтому должен развернуться на 90° вправо, а еще в следующую секунду – что робот находится в ячейке справа от цели и должен обернуться на 90° влево.

Чтобы покончить с замешательством робота, мы должны сначала умерить нашу настойчивость в том, что робот сведёт свою ошибку позиционирования (или расстояние до цели) к нулю. То есть мы должны установить «мертвую зону» в системе управления вокруг Dist = 0. Мы заменим утверждение if (Dist /= 0)… на if (Dist > Thresh)…. Теперь робот будет сам решать: находится ли он достаточно близко от цели и может ли завершить самонаведение – когда прибудет в зону погрешности возле цели. Значение погрешности определяется пределом разрешения GPS системы. Как правило, определяется это значение экспериментально. Практические значения могут оказаться больше, возможно в несколько раз, предела разрешения.

Чтобы надежно приблизиться к цели ближе, чем описано выше, надо купить систему позиционирования с лучшим разрешением. Но, к сожалению, абсолютные системы позиционирования с высоким разрешением, которые работают по большой области, имеют свойство быть очень дорогими. По этой причине маленькие роботы стараются быть умнее при своём позиционировании. Прямой подход просто стоит слишком дорого.

Примечание: можно одолеть проблему разрешения с помощью усреднения. Если робот остаётся неподвижным в некотором положении какое-то время, это положение составит среднее от изменяющихся позиций, сообщенных системой позиционирования. То есть будет получаться все более точное значение истинной позиции робота (при условии, что ошибки скорее носят случайный характер, чем систематический). Один стационарный приемник, который делает усреднение, чтобы определить истинное местоположение, посылает корректировки позиции мобильному GPS приемнику на роботе. Но решение путём усреднения не свободно от недостатков; его осуществление требует, либо чтобы робот двигался медленно, либо чтобы мы купили более дорогую систему, включающую два GPS приемника, вычислительные аппаратные средства и локальные передатчик/приемник, чтобы сообщать корректировки роботу.

Рис. 1.4. Пример GPS-приёмника, предлагаемого на российском рынке (еще один пример приёмника, встроенного в модуль GSM/GPRS будет в главе о беспроводной передаче данных): LS-40EB (рис. 1.4). Это 12-канальный GPS-приёмник.

Его характеристики:

• количество временных последовательностей поиска: 4000;

• чувствительность обнаружения сигнала, дБм: (-)137;

• чувствительность слежения, дБм: (-)145;

• точность определения СЕР, м: 5;

• рабочие пределы:

– высота, м: до 18000;

– скорость, м/с: до 515;

• питание, В: 3.3;

• потребляемый ток, мА: 67-90;

• размеры, мм: 43x31x6;

• вес, г: 10.

<p>2. Примеры роботов, функционирование которых обусловлено наличием средств ориентирования в пространстве</p>

На рис. 1.5 – авиаробот, который с помощью встроенных средств навигации совершает автономный полёт по запрограммированному маршруту с высокой точностью (подробнее см. журнал «Радиолюбитель» № 1–2 за 2005 г.).

Рис. 1.5

На рисунках 1.6, 1.7, 1.8 – роботы, также нуждающиеся в разнообразных системах навигации, которые могут быть построены на основе различных сенсоров, или датчиков (примеры некоторых датчиков приведены в таблице 1.1).

Рис. 1.6. «Танец» мобильных роботов, Россия

Рис. 1.7. Мобильный робот, Россия

Рис. 1.8. Робот-пылесос, Россия

Таблица 1.1<p>3. Датчики, реагирующие на воздействия окружающей робота среды</p>
Перейти на страницу:

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука
Металлоискатели
Металлоискатели

Книга предназначена для радиолюбителей, интересующихся вопросами поиска различных металлических предметов с помощью специального оборудования, к которому, в первую очередь, относятся металлоискатели.В соответствующих разделах приведены принципиальные схемы и рисунки печатных плат как простых, так и более сложных конструкций. Даны рекомендации по самостоятельному изготовлению и настройке металлоискателей, а также советы по их практическому применению.Настоящее издание будет полезно не только подготовленным радиолюбителям, но и всем читателям, интересующимся данной темой, поскольку большинство представленных конструкций может изготовить как взрослый, так и школьник, никогда не державший в руках паяльник.

Михаил Васильевич Адаменко

Радиоэлектроника / Технические науки / Образование и наука
Введение в Саентологическую Этику
Введение в Саентологическую Этику

Можете ли Вы устранить препятствие с пути к свободе?У человека никогда не было возможности справиться с последствиями совершенных им плохих поступков или сказать с уверенностью о том, какие решения обеспечат прекрасное будущие.Но теперь эта возможность существует.Вы можете изучить технологию этики, которая дается в этой книге, и уверенно идти по дороге к свободе.То, что описано в этой книге, — это не что-то, что другой человека делает для вас. Это ваше личное дело. Внимательно изучите эти данные и применяйте их, чтобы быть своим собственным советчиком и оставаться верным своим собственным целям.Мир может стать довольно диким, но, полностью понимая саентологическую этику и правосудие, вы будите точно знать. как внести порядок в свою жизнь и жизни окружающих вас людей.Применяйте знания, содержащиеся в книге «Введение в саентологическую этику», — и вы всегда будите преуспевать.

Л. Рон Хаббард , Рон Лафайет Хаббард

Религия, религиозная литература / Технические науки / Обществознание / Прочая научная литература / Эзотерика
Всевидящее око фюрера
Всевидящее око фюрера

Книга посвящена деятельности эскадрилий дальней разведки люфтваффе на Восточном фронте. В отличие от широко известных эскадр истребителей или штурмовиков Ju-87, немногочисленные подразделения разведчиков не притягивали к себе столько внимания. Их экипажи действовали поодиночке, стараясь избегать контакта с противником. Но при этом невидимая деятельность разведчиков оказывала огромное влияние как на планирование, так и на весь ход боевых действий.Большая часть работы посвящена деятельности элитного подразделения люфтваффе – Aufkl.Gr.Ob.d.L., известной также как группа Ровеля. Последний внес огромный вклад в создание дальней разведки люфтваффе, а подчиненное ему подразделение развернуло свою тайную деятельность еще до начала войны с Советским Союзом. После нападения на СССР группа Ровеля вела разведку важных стратегических объектов: промышленных центров, военно-морских баз, районов нефтедобычи, а также отслеживала маршруты, по которым поставлялась союзная помощь (ленд-лиз). Ее самолеты летали над Кронштадтом, Севастополем, Москвой, всем Поволжьем, Уфой и Пермью, Баку, Тбилиси, даже Ираном и Ираком! Группа подчинялась непосредственно командованию люфтваффе и имела в своем распоряжении только лучшую технику, самые высотные и скоростные самолеты-разведчики.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука