Читаем Культурный переворот в Древней Греции VIII—V вв. до н.э. полностью

Примеры такого рода можно было бы легко умножить, и вообще всю историю древнегреческой литературы архаической и классической эпох можно было бы с пользой для дела изложить систематически, указывая для каждого автора на роль агонального начала и стремления к самоутверждению, отталкивание от традиционных ценностей в содержании и от традиционных канонов в форме, влияние Гомера и его преодоление, значение эстетического момента. Однако и то немногое, что было приведено, достаточно выпукло демонстрирует принципиальное отличие древнегреческой литературы от письменных словесностей III—II тысячелетия до н. э., связанных традицией и установкой на практическую задачу, и обусловленность этого нового качества общей атмосферой культурного переворота.

ГЛАВА V

Зарождение науки

§ 1. Возникновение дедуктивной математики

Мы уже говорили выше (гл. III, § 1) о математических познаниях вавилонян и о коренном отличии от вавилонской математики самых первых шагов, сделанных греками. Египетские и вавилонские математические тексты никогда не содержат доказательств. Перед нами задачи и рецепты их решения, и в этом заключается принципиальное отличие математических познаний народов Древнего Востока от греческой математики.[849] В египетских математических текстах, в отличие от вавилонских, нет и задач, которые бы не вытекали непосредственно из практических потребностей.[850]

Таким образом, мы считаем, что правы те, кто доказывает, что математика как наука появляется только в Греции.[851] Совершенно не убедительной является попытка Зейденберга усмотреть дедуктивный метод в рецептах построения геометрических фигур, необходимых для ритуально корректного сооружения алтарей, в рецептах, которые мы находим в индийских «Сульвасутрах» Апастамбы и Баудхаяны, причем спорна также и датировка этих памятников.[852]

Первые в истории человечества доказательства математических положений, в данном случае геометрических теорем, наш надежнейший источник по ранней истории греческой математики — ученик Аристотеля Евдем Родосский — приписывает Фалесу. Евдем использовал, судя по всему, древнейшее доксографическое сочинение софиста Гиппия, который и сам занимался математикой.[853]

Как утверждает Евдем, Фалес доказал следующие теоремы:

— о том, что круг делится диаметром на две равные части;

— о равенстве углов при основании равнобедренного треугольника;

— о равенстве треугольников, у которых равны основание и прилежащие к нему углы (11 А 20 DK = Eud. fr. 134 Wehrli).

По словам того же Евдема, Фалес установил также равенство вертикальных углов, хотя доказательство этого предложения было дано только Евклидом (11 А 20 DK = Eud. fr. 135 Wehrli). Наконец, по свидетельству Памфилы, Фалес первый вписал прямоугольный треугольник в окружность (D. L. I, 24).

У нас нет достаточных оснований сомневаться в том, что именно Фалес совершил эту революцию в человеческом мышлении.[854] Неубедительна, в частности, аргументация Дикса, который с большей систематичностью, чем другие скептики, подобрал доводы, имеющие целью подорвать доверие к традиции о Фалесе.[855] В частности, недостаточны общие соображения Дикса против возможности использования Проклом непосредственно сочинения Евдема Родосского.[856] Во всяком случае, Симпликий неоднократно цитировал работы Евдема по истории математики, в частности, обширный фрагмент из его «Истории геометрии» о квадратуре луночек Гиппократа Хиосского (fr. 140 Wehrli). Если оспариваемые Диксом математические открытия Фалеса известны нам через посредство поздних источников, то здесь следует вспомнить, что авторы типа Прокла и Симпликия вообще являются нашим основным непосредственным источником по истории греческой математики до Евклида.

Дикс односторонне характеризует раннюю (до 320 г. до н. э.) традицию о Фалесе, утверждая, что она рисует его прежде всего как «practical man of affairs» (практического, делового человека).[857] Те самые свидетельства Аристофана, на отсутствие которых в собрании Дильса-Кранца жалуется Дике, характеризуют Фалеса не просто как умного и не всегда разборчивого в средствах человека:[858] обращаясь к афинской театральной публике, Аристофан явно ожидает от нее ассоциации имени Фалеса с геометрическими построениями (Nub. 177-180; Αν. 999-1009).

Дикс прав, когда он говорит, что, поскольку Фалес ничего не писал, Евдем в некоторых случаях вынужден был прибегать к реконструкции его достижений.[859] Однако это еще не доказывает того, что в распоряжении Евдема не могло быть надежной традиции о теоремах Фалеса.[860] В пользу традиции говорит и отмеченный О. Бекером факт внутренней связи приписываемых Фалесу теорем: все они легко доказываются, если построить прямоугольник, вписанный в круг, и соединить его вершины диагоналями (Бекер называет это построение «основной фигурой Фалеса»).[861]

Перейти на страницу:

Похожие книги

100 знаменитых чудес света
100 знаменитых чудес света

Еще во времена античности появилось описание семи древних сооружений: египетских пирамид; «висячих садов» Семирамиды; храма Артемиды в Эфесе; статуи Зевса Олимпийского; Мавзолея в Галикарнасе; Колосса на острове Родос и маяка на острове Форос, — которые и были названы чудесами света. Время шло, менялись взгляды и вкусы людей, и уже другие сооружения причислялись к чудесам света: «падающая башня» в Пизе, Кельнский собор и многие другие. Даже в ХIХ, ХХ и ХХI веке список продолжал расширяться: теперь чудесами света называют Суэцкий и Панамский каналы, Эйфелеву башню, здание Сиднейской оперы и туннель под Ла-Маншем. О 100 самых знаменитых чудесах света мы и расскажем читателю.

Анна Эдуардовна Ермановская

Документальная литература / История / Прочая документальная литература / Образование и наука / Документальное
Клуб банкиров
Клуб банкиров

Дэвид Рокфеллер — один из крупнейших политических и финансовых деятелей XX века, известный американский банкир, глава дома Рокфеллеров. Внук нефтяного магната и первого в истории миллиардера Джона Д. Рокфеллера, основателя Стандарт Ойл.Рокфеллер известен как один из первых и наиболее влиятельных идеологов глобализации и неоконсерватизма, основатель знаменитого Бильдербергского клуба. На одном из заседаний Бильдербергского клуба он сказал: «В наше время мир готов шагать в сторону мирового правительства. Наднациональный суверенитет интеллектуальной элиты и мировых банкиров, несомненно, предпочтительнее национального самоопределения, практиковавшегося в былые столетия».В своей книге Д. Рокфеллер рассказывает, как создавался этот «суверенитет интеллектуальной элиты и мировых банкиров», как распространялось влияние финансовой олигархии в мире: в Европе, в Азии, в Африке и Латинской Америке. Особое внимание уделяется проникновению мировых банков в Россию, которое началось еще в брежневскую эпоху; приводятся тексты секретных переговоров Д. Рокфеллера с Брежневым, Косыгиным и другими советскими лидерами.

Дэвид Рокфеллер

Биографии и Мемуары / История / Образование и наука / Документальное