то величины T и t оказываются отрицательными. В этом случае при условии, что |t|>>1, соотношение (34.27) может быть переписано в виде
T
|T|
exp
t
.
(34.28)
Из формулы (34.28) видно, что при |t|>>20—30 яркостная температура достигает тех огромных значений, которые получаются из наблюдений.
Нетрудно убедиться также в том, что с помощью формулы (34.28) может быть объяснён и другой важный наблюдательный факт — чрезвычайная узость спектральных линий. Допустим, что коэффициент поглощения имеет доплеровский профиль, т.е.
k
=
k
exp(-x^2)
,
(34.29)
где
x
=
-
D
и
D
=
c
2kT
M
1/2
—
доплеровская полуширина (M — масса молекулы и T — кинетическая температура облака). Учитывая (34.29), вместо (34.28) находим
T
|T|
exp
t
e
-x^2
,
(34.30)
где обозначено
t
=
k
s
g
g
n
-
n
.
Пусть полуширина спектральной линии, т.е. то расстояние от центра линии, на котором интенсивность (или заменяющая её яркостная температура) приблизительно в два раза меньше её центрального значения. Пользуясь формулой (34.30), для полуширины линии получаем
D
t
.
(34.31)
Так как доплеровская полуширина D мала вследствие малости кинетической температуры, а величина t велика (скажем, порядка 25), то полуширина линии действительно должна быть исключительно малой.
При применении формулы (34.28) следует иметь в виду, что она справедлива лишь тогда, когда населённость второго уровня определяется в основном механизмом накачки. Однако когда интенсивность излучения в линии становится достаточно большой, это излучение начинает сильно влиять на населённости уровней. Для такого мазера (его называют насыщенным) рост яркостной температуры с оптической толщиной происходит более медленно, чем по формуле (34.28) (подробнее см. [8]).
Наблюдения космических мазеров показывают, что они расположены во внешних частях огромных газово-пылевых туманностей. По мазерному излучению сделано заключение, что оно идёт от небольших и сравнительно плотных облаков (протяжённостью порядка 10^1 см и плотностью порядка 10^1 г/см^3). Предполагают, что эти облака являются зарождающимися звёздами.
6. Радиоизлучение Метагалактики.
До сих пор мы говорили только о межзвёздной среде в нашей Галактике. Однако для понимания природы межзвёздной среды очень большое значение имеют также результаты изучения других галактик. Эти результаты основываются на наблюдениях галактик как в оптической области спектра, так и в радиодиапазоне (см. [9]).
Самыми близкими к нам галактиками являются Магеллановы Облака. В них обнаружено много газовых туманностей и вызывающих их свечение горячих звёзд. Особенно велика туманность S Золотой Рыбы, масса которой составляет, по-видимому, около миллиона масс Солнца. От этой туманности идёт сильное радиоизлучение в непрерывном спектре, имеющее тепловое происхождение. Основная же часть радиоизлучения Магеллановых Облаков в непрерывном спектре имеет нетепловую (вероятно, синхротронную) природу. Важные результаты дали наблюдения излучения Магеллановых Облаков в радиолинии с длиной волны 21 см. В частности, по интенсивности этого излучения удалось определить массу находящегося в них межзвёздного водорода (приблизительно 6·10 M в Большом Магеллановом Облаке и 4·10 M — в Малом).
Очень близка к нам также галактика M 31 («туманность Андромеды»), во многих отношениях похожая на Млечный Путь. Изучение её свечения в линии =21 см позволило определить скорость вращения на разных расстояниях от центра и распределение межзвёздного водорода. Радиоизлучение галактики в непрерывном спектре идёт от более протяжённой области, чем оптическое излучение. Это свидетельствует о наличии короны, подобной короне нашей Галактики. Интенсивность излучения меняется с частотой по закону -0,7, что может быть объяснено синхротронным характером излучения.
Разными наблюдателями были измерены также потоки радиоизлучения, идущие от многих других галактик. Определённое по потоку излучения в линии =21 см количество межзвёздного водорода в галактике оказалось сильно зависящим от её структуры. Этот факт представляет значительный интерес с точки зрения теории развития галактик.