Читаем Курс теоретической астрофизики полностью

Допустим, что на некотором расстоянии в рассматриваемом направлении находится облако межзвёздного водорода, движущееся по отношению к наблюдателю со скоростью v. Тогда для частот , близких к частоте , определяемой формулой (34.17), величина t будет иметь максимум и должен наблюдаться пик в профиле линии. По интенсивности этого пика можно найти число атомов водорода в облаке, а по смещению пика относительно центральной частоты — скорость движения облака. Однако в действительности вдоль луча зрения находится большое число облаков, движущихся с разными скоростями. Кроме того, межзвёздный газ участвует в галактическом вращении. Поэтому профили данной линии оказываются довольно сложными.

При анализе профилей линии =21 см надо иметь в виду, что излучение, в этой линии доходит до нас от очень далёких частей Галактики. Поэтому из всех движений межзвёздного газа наибольшее влияние на профиль линии оказывает галактическое вращение. Легко получить, что в таком случае лучевая скорость некоторого объёма относительно наблюдателя определяется формулой

v(r)

=

R

(R)

-

(R)

sin(l-l)

,

(34.18)

где R и R — расстояния данного объёма и Солнца от галактического центра соответственно, (R) — угловая скорость вращения, l-l — разность долгот данного объёма и центра Галактики (рис. 45). Если функция (R) известна, то, пользуясь формулой (34.15), можно по наблюдённым профилям линий найти распределение водорода в Галактике. Такая работа, проделанная Оортом и его сотрудниками, привела к заключению о преимущественном нахождении водорода в спиральных рукавах. В настоящее время существуют подробные карты распределения водорода в галактической плоскости.

Рис. 45

Если проинтегрировать обе части формулы (34.15) по всем частотам, то мы получим

0

I

-

I

d

=

h

4

A

0

n(r)

dr

,

(34.19)

где A даётся формулой (34.11). При получении формулы (34.19) использовано соотношение (8.12) и принято во внимание отрицательное поглощение. Мы видим, что при помощи формулы (34.19) по наблюдённой полной интенсивности линии можно определить полное число атомов водорода в столбе с сечением 1 см^2, расположенным вдоль луча зрения. Отсюда, задавая размеры Галактики, можно найти среднюю концентрацию атомов водорода. Для этой величины, как и другими методами, получается значение n1 см^3.

По профилям линии =21 см может быть также определена скорость галактического вращения в зависимости от R. Очевидно, что для данного луча наибольшей лучевой скоростью обладает тот объём, который находится на наименьшем расстоянии от центра Галактики, равном Rsin(l-l). С другой стороны, скорость этого объёма определяется по смещению края линии относительно центральной частоты . Сопоставление между собой этих величин, полученных при наблюдениях в разных направлениях, даёт возможность найти функцию (R).

Таким образом, путём анализа профилей линии =21 см получаются весьма важные результаты. В значительной мере это объясняется наличием больших градиентов скорости в межзвёздной среде, обусловленных галактическим вращением. Благодаря эффекту Доплера излучение в линии, идущее от разных частей Галактики, имеет разную частоту, и не поглощается на пути до наблюдателя. Поэтому каждый элемент профиля линии характеризует излучение, пришедшее от определённой части Галактики. Этим в сильной степени облегчается анализ профиля линии.

Кроме линии =21 см, межзвёздная среда излучает и другие линии в радиодиапазоне. В частности, водород даёт такие линии при переходах между уровнями тонкой структуры. Например, при переходе 2^2P^3/-2^2S^1/ возникает линия с длиной волны 3 см. Однако интенсивность этой линии мала. Водород излучает также линии в радиодиапазоне при переходах между высокими уровнями с близкими главными квантовыми числами. Легко убедиться, что при переходах n->n-1 образуются линии с длиной волны 1 см, если n60. Как показали расчёты Н. С. Кардашева, интенсивности этих линий довольно велики и их можно обнаружить. Впоследствии они действительно наблюдались, и это позволило судить о населённости высоких уровней атома водорода.

Наряду с линиями водорода, в радиоспектре межзвёздной среды присутствуют эмиссионные линии многих молекул: гидроксила OH, аммиака NH, воды HO, формальдегида HCO и др. Вопрос о возникновении некоторых из этих линий будет подробно рассмотрен ниже.

Наличие в межзвёздном пространстве разного типа молекул (в частности, органической молекулы формальдегида) свидетельствует о весьма сложной химической эволюции межзвёздной среды.

4. Линии поглощения в радиодиапазоне.

Межзвёздный водород на волне =21 см может давать не только линию излучения, но и линию поглощения. Последняя образуется тогда, когда на луче зрения оказывается сильный источник радиоизлучения в непрерывном спектре. Вообще говоря, интенсивность излучения в линии определяется формулой

I

=

B

(T

k

)

1

-

exp

-

t

+

I

''

+

I

exp

-

t

,

(34.20)

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука