Читаем Курс теоретической астрофизики полностью

Диффузные туманности светятся за счёт излучения звёзд спектральных классов O, WR и B0, находящихся в самой туманности или около неё. Наблюдениями не обнаружены диффузные туманности, свечение которых вызывается звёздами спектральных классов, более поздних, чем B0. Объясняется это тем, что высокочастотного излучения таких звёзд недостаточно, чтобы вызвать заметное свечение туманности в видимой части спектра.

Как показывают наблюдения, вещество, составляющее планетарные туманности, удаляется от ядра, т.е. туманности расширяются. При этом скорости расширения туманностей равны нескольким десяткам километров в секунду. Первоначально заключение о расширении планетарных туманностей было сделано на основании спектральных наблюдений. Эмиссионные линии в спектрах туманностей оказываются сравнительно узкими на краю туманности и более широкими или даже раздвоёнными в её центре. При предположении о расширении туманностей это объясняется тем, что на краю туманности луч зрения пересекает ту её часть, которая движется с нулевой лучевой скоростью, а в центре он пересекает области, одна из которых к нам приближается, а другая от нас удаляется. Позднее факт расширения планетарных туманностей был подтверждён непосредственным сравнением фотографий некоторых туманностей, полученных с интервалом в несколько десятков лет. Указанный факт послужил основанием для гипотезы об образовании планетарной туманности в результате выброса вещества из её ядра.

2. Причина свечения туманностей.

Как уже сказано, в газовых туманностях происходит переработка высокочастотного излучения звёзд в кванты меньших частот. Мы сейчас должны выяснить, в чем причина этого процесса. Чтобы сделать это, рассмотрим сначала свойства излучения, приходящего от звезды в данное место туманности.

Будем считать, что звезда излучает как абсолютно чёрное тело температуры 𝑇. Если бы все небо сплошь было покрыто такими звёздами, то плотность излучения в данном месте туманности равнялась бы плотности излучения при термодинамическом равновесии, т.е. выражалась бы формулой Планка


ρ

ν

=

8πℎν³


1

.


𝑐³

exp

ℎν

-1


𝑘𝑇


(22.1)


В действительности плотность излучения в туманности гораздо меньше ρν. Мы её представим в виде


ρ

ν

=

𝑊

ρ

ν

,


(22.2)


где 𝑊 — так называемый коэффициент дилюции (ослабления) излучения. Очевидно, что


𝑊

=

Ω

,


(22.3)


Рис. 29

где Ω — телесный угол, под которым видна звезда из данной точки туманности (рис. 29). Обозначим через 𝑟 радиус звезды и через 𝑟 — расстояние рассматриваемой точки от центра звезды. Так как


Ω

=

θ₀

0

sin

θ

𝑑θ

=

(1-cos

θ₀)

,


а sin θ₀=𝑟/𝑟, то мы получаем


𝑊

=

1

2


1-

1-


𝑟

𝑟


⎞²


⎫½


.


(22.4)


В точку, находящуюся на поверхности звезды, излучение приходит от полусферы. Поэтому в данном случае (т.е. при 𝑟=𝑟) 𝑊=½.

Для точек, находящихся на больших расстояниях от звезды (т.е. при 𝑟≫𝑟), из формулы (22.4) находим


𝑊

=

1

2



𝑟

𝑟


⎞²

.


(22.5)


Заметим, что в этом случае коэффициент дилюции может быть представлен как отношение площади диска звезды π𝑟² к площади сферы радиуса 𝑟, т.е. 4π𝑟².

Средние радиусы планетарных туманностей оказываются порядка 10¹⁷ см, а радиусы их ядер — порядка 10¹⁰ см. Поэтому плотность излучения в планетарной туманности ослаблена приблизительно в 10¹⁴ раз по сравнению с плотностью излучения на поверхности звезды.

Проинтегрировав соотношение (22.2) по всем частотам и воспользовавшись формулой Стефана — Больцмана для интегральной плотности излучения при термодинамическом равновесии, получаем следующее выражение для интегральной плотности излучения в туманности


ρ

=

𝑊𝑎𝑇

.


(22.6)


Представив величину ρ в виде ρ=𝑎𝑇₁⁴, находим


𝑇₁

=

𝑊

¼

𝑇

.


(22.7)


Так как температуры звёзд, вызывающих свечение туманностей, порядка нескольких десятков тысяч кельвинов, а значения 𝑊 в туманностях, как мы только что определили, порядка 10⁻¹⁴, то значения температуры 𝑇₁ соответствующей интегральной плотности излучения в туманностях, оказываются всего порядка нескольких десятков кельвинов.

Итак, интегральная плотность излучения, приходящего от звезды в туманность, чрезвычайно мала. Между тем, как видно из формулы (22.2), относительное распределение этого излучения по частотам оказывается таким же, как при выходе из звезды, т.е. соответствующим очень высокой температуре 𝑇. Таким образом, излучение, приходящее от звезды в туманность, характеризуется громадным несоответствием между интегральной плотностью и спектральным составом.

Если излучение, обладающее указанным свойством, взаимодействует с веществом, то, как известно из термодинамики, происходит перераспределение излучения по частотам в направлении установления наиболее вероятного распределения. Иными словами, в таком случае должна происходить переработка квантов больших частот в кванты меньших частот. Этим даётся качественное объяснение процесса переработки излучения в газовых туманностях.

3. Теорема Росселанда.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос