Читаем Курс теоретической астрофизики полностью

Величина 𝐻ν характеризует относительное распределение энергии в непрерывном спектре звезды. Важной особенностью спектров звёзд некоторых классов являются скачки интенсивности у пределов серий, вызванные скачками коэффициента поглощения. В частности, в спектрах звёзд классов 𝙰 и 𝙱 должны быть скачки у предела серии Бальмера (интенсивность до предела больше интенсивности после предела). Приближённо бальмеровский скачок может быть найден по формуле (6.10). Более точные данные о бальмеровских скачках в звёздных спектрах будут приведены ниже.

Пользуясь формулой (6.10) и наблюдательными данными о распределении энергии в непрерывном спектре звезды, можно приближённо определить зависимость коэффициента поглощения от частоты в фотосфере (точнее говоря, величину αν/α). Такое определение было сделано для Солнца, когда ещё не был решён вопрос о том, какими атомами вызывается в основном поглощение в фотосфере Солнца. Это исследование сильно способствовало решению указанного вопроса.

2. Случай поглощения атомами одного рода.

Изложенная выше приближённая теория даёт результаты, которые могут быть использованы лишь для грубых оценок. Переходя теперь к более строгой теории фотосфер, мы сначала рассмотрим один частный случай, в котором эта теория сравнительно проста. Именно, допустим, что поглощение в фотосфере вызывается в основном атомами одного рода, т.е. атомами одного элемента в определённой стадии ионизации. В этом случае объёмный коэффициент поглощения может быть представлен в виде произведения двух функций, одна из которых зависит только от частоты и температуры, а другая — только от температуры и плотности, т.е.

α

ν

=

Φ(ν,𝑇)

Ψ(𝑇,ρ)

.

(6.11)

Возможность такого представления видна, например, из формулы (5.11), определяющей коэффициент поглощения αν для водорода.

Если αν даётся формулой (6.11), то уравнение переноса излучения может быть записано так:

cosθ

𝑑𝐼ν

𝑑ζ

=

Φ(ν,𝑇)

[𝐼

ν

-𝐵

ν

(𝑇)]

,

(6.12)

где 𝐵ν(𝑇) — интенсивность излучения абсолютно чёрного тела при температуре 𝑇 и

ζ

=

𝑟

Ψ(𝑇,ρ)

𝑑𝑟

.

(6.13)

Уравнение лучистого равновесия (1.17) в данном случае принимает вид

0

Φ(ν,𝑇)

𝐵

ν

(𝑇)

𝑑ν

=

0

Φ(ν,𝑇)

𝑑ν

𝐼

ν

𝑑ω

.

(6.14)

Из уравнений (6.12) и (6.14) может быть получено одно интегральное уравнение для определения температуры 𝑇 в виде функции от ζ. Если эта функция найдена, то из уравнения (6.12) можно определить интенсивность излучения 𝐼ν(ζ,θ) и, в частности, интенсивность излучения на границе звезды, т.е. величину 𝐼ν(0,θ).

Введение независимой переменной ζ даёт возможность избежать нахождения распределения плотности в фотосфере при определении спектра звезды. Если же нас интересует не только спектр звезды, но и величины 𝑇 и ρ в зависимости от 𝑟, то, зная функцию 𝑇(ζ), их можно легко найти из уравнения (6.13) и уравнения механического равновесия (4.42).

Так как самым распространённым элементом в поверхностных слоях звёзд является водород, то можно было бы думать, что поглощение излучения в фотосферах всех звёзд вызывается в основном атомами водорода. В действительности дело обстоит не так. В фотосферах звёзд поздних классов атомы водорода находятся почти полностью в первом состоянии, вследствие чего они поглощают излучение практически только за границей серии Лаймана. Между тем при низких температурах кривая распределения энергии по частотам имеет максимум в инфракрасной части спектра. Следовательно, в фотосферах звёзд поздних классов поглощение излучения водородными атомами не может играть существенной роли.

Однако с увеличением температуры растёт число атомов водорода в возбуждённых состояниях. Вместе с тем происходит смещение максимума кривой распределения энергии по частотам в сторону больших частот. Поэтому с увеличением температуры роль атомов водорода в поглощении возрастает. Подсчёты показывают, что в фотосферах звёзд классов 𝙰 и 𝙱 (точнее говоря, звёзд с эффективными температурами порядка 10 000-20 000 K) поглощение производится в основном атомами водорода. В фотосферах более горячих звёзд существенную роль в поглощении играют также атомы гелия.

Таким образом, для звёзд с 𝑇𝑒≃10 000-20 000 K коэффициент поглощения обусловлен в основном водородом и может быть представлен в форме (6.11). Теория фотосфер этих звёзд была разработана Э.Р. Мустелем [6]. Вместо рассмотрения упомянутого интегрального уравнения для функции 𝑇(ζ) он предложил определять её последовательными приближениями из уравнения

𝑑𝑇

=

𝐻

,

𝑑ζ

0

1

𝑑𝐾

ν

-

𝑑ν

Φ(ν,𝑇)

𝑑𝑇

(6.15)

где

𝐾

ν

=

𝐼

ν

cos²θ

𝑑ω

.

(6.16)

Уравнение (6.15) получается из (6.12) путём умножения его на cos θ/Φ(ν,𝑆) и интегрирования по всем частотам и направлениям. Величина 𝐻 есть полный поток излучения в фотосфере. Как мы знаем, 𝐻=const, что является следствием уравнения (6.14). При решении уравнения (6.15) в качестве первого приближения можно принять 𝐾ν=𝐵ν(𝑇).

Э. Р. Мустель вычислил распределение энергии в непрерывном спектре звёзд с эффективными температурами 10 500 К, 15 500 К и 20 500 К. Часть полученных им результатов приведена на рис. 8 и в табл. 1.

Рис. 8

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос