Читаем Курс теоретической астрофизики полностью

где интегрирование производится по всем направлениям падающего на объём излучения и γ' есть угол между каким-либо из этих направлений и направлением излучения, рассеянного объёмом.

В уравнениях (19.1) и (19.4) вместо коэффициента излучения ε введём величину 𝑆 посредством соотношения


ε

=

α𝑆

.


(19.5)


При произвольной индикатрисе рассеяния величины 𝑆 и 𝐼 зависят от оптической глубины τ зенитного расстояния θ и азимута φ. Поэтому вместо уравнений (19.1) и (19.4) мы можем написать


cos θ

𝑑𝐼(τ,θ,φ)

𝑑τ

=

𝐼(τ,θ,φ)

-

𝑆(τ,θ,φ)

,


(19.6)


𝑆(τ,θ,φ)

=

λ


0

𝑑ψ'

π

0

𝑥(γ')

𝐼(τ,θ',φ')

sin θ'

𝑑θ'

+


+

λ

4

𝐹

𝑥(γ)

exp

sec θ₀

,


(19.7)


где


cos γ'

=

cos θ

cos θ'

+

sin θ

sin θ'

cos(φ-φ')

,



cos γ

=-

cos θ

cos θ₀

+

sin θ

sin θ₀

cos φ

,


(19.8)


а азимут направления солнечных лучей принят равным нулю.

Таким образом, задача о рассеянии света в планетной атмосфере сводится к решению уравнений (19.6) и (19.7). К этим уравнениям следует присоединить ещё граничные условия. Условие на верхней границе атмосферы (т.е. при τ=0) должно выражать тот факт, что нет диффузного излучения, падающего на атмосферу извне. Условие на нижней границе (т.е. при τ=τ₀) должно учитывать отражение излучения поверхностью планеты.

Решая приведённые уравнения, можно найти интенсивности излучения, выходящего из атмосферы. Сравнение теоретических и наблюдённых значений этих интенсивностей позволяет сделать заключения об оптических свойствах атмосферы, т.е. о величинах τ₀, λ, и 𝑥(γ).

В свою очередь по оптическим свойствам атмосферы можно судить о природе частиц, которые её составляют. Для этого используется теория рассеяния света на отдельных частицах (см., например, [4]). Эта теория, разработанная особенно подробно для шаровых частиц, определяет коэффициент поглощения α, альбедо частицы λ и индикатрису рассеяния 𝑥(γ) в зависимости от отношения радиуса частицы к длине волны излучения и от показателя преломления вещества частицы.

Заметим, что в случае рассеяния света молекулами индикатриса рассеяния определяется формулой Рэлея


𝑥(γ)

=

¾

(1+cos²γ)

.


(19.9)


Если же рассеяние света производится частицами, радиусы которых сравнимы с длиной волны излучения, то индикатриса рассеяния обычно оказывается сильно вытянутой вперёд.

2. Полубесконечная атмосфера.

Как уже сказано, атмосферы некоторых планет обладают оптической толщиной, превосходящей по порядку единицу. В этом случае при определении интенсивности излучения, диффузно отражённого атмосферой, приближённо можно считать τ₀=∞.

Сначала мы допустим, что в атмосфере происходит изотропное рассеяние света, т.е. 𝑥(γ)=1. Тогда величина 𝑆 будет функцией только от τ, а интенсивность излучения 𝐼 — функцией только от τ и θ. Поэтому уравнения (19.6) и (19.7) можно переписать в виде


μ

𝑑𝐼(τ,μ,μ₀)

𝑑τ

=

𝐼(τ,μ,μ₀)

-

𝑆(τ,μ₀)

,


(19.10)


𝑆(τ,μ₀)

=

λ

2


+1

-1

𝐼(τ,μ,μ₀)

𝑑μ

+

λ

4

𝐹

exp

-

τ

μ₀


,


(19.11)


где обозначено cos θ=μ, cos θ₀=μ₀ и подчёркнута зависимость величин 𝐼 и 𝑆 от параметра μ₀.

Из уравнений (19.10) и (19.11) можно получить одно интегральное уравнение для определения функции 𝑆(τ,μ₀). Поступая так же, как при выводе уравнения (2.48), находим


𝑆(τ,μ₀)

=

λ

2


0

𝐸₁|τ-𝑡|

𝑆(𝑡,μ₀)

𝑑𝑡

+

λ

4

𝐹

exp

-

τ

μ₀


,


(19.12)


где 𝐸₁ — первая интегральная показательная функция.

Если функция 𝑆(τ,μ₀) известна, то может быть легко определена и интенсивность излучения, выходящего из атмосферы, т.е. величина 𝐼(0,μ,μ₀). Полагая


𝐼(0,μ,μ₀)

=

𝐹ρ(μ,μ₀)

μ₀

,


(19.13)


имеем


ρ(μ,μ₀)

=

1

𝐹


0

𝑆(τ,μ₀)

exp

-

τ

μ



𝑑τ

μμ₀

.


(19.14)


Величина ρ(μ,μ₀) называется коэффициентом яркости или коэффициентом отражения атмосферы.

Интегральное уравнение (19.12) относится к уравнениям типа (3.1), подробно рассмотренным в § 3. В данном случае ядро уравнения (3.1) даётся формулой (3.17), в которой 𝐴(𝑥)=λ/2𝑥, 𝑎=1, 𝑏=∞, а свободный член имеет вид


𝑔(τ)

=

λ

4

𝐹

exp

-

τ

μ₀


.


Пользуясь соотношениями (3.19) и (3.20), мы получаем для коэффициента яркости выражение


ρ(μ,μ₀)

=

λ

4


φ(μ) φ(μ₀)

μ-μ₀

,


(19.15)


в котором функция φ(μ) определяется уравнением


φ(μ)

=

1+

λ

2

μφ(μ)

1

0


φ(μ')

μ+μ'

𝑑μ'

.


(19.16)


Как мы помним, функция φ(μ) уже встречалась в теории звёздных фотосфер (в § 3) и в теории образования звёздных спектров (в § 10). Теперь мы видим, что через ту же функцию выражается коэффициент яркости планетной атмосферы. Значения функции φ(μ) при разных значениях параметра λ приведены на стр. 119.

Соотношения (19.15) и (19.16) мы получили при помощи уравнения (19.12), однако В. А. Амбарцумян показал, что их можно также получить без использования этого уравнения, а именно — при помощи так называемого «принципа инвариантности». Согласно этому принципу отражательная способность полубесконечной среды не изменится, если к ней добавить некоторый слой с теми же оптическими свойствами. Добавляя к полубесконечной среде слой бесконечно малой оптической толщины, определяя все изменения в интенсивности излучения, вносимые этим слоем, и приравнивая их нулю, мы и приходим к указанным соотношениям (см. [1]).

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос