Следует отметить, что в соответствии с условием формировки сферических функций интегрирование по углам и не приводит к появлению множителя 4, который иногда ошибочно включается в выражение для nl(r).
Примеры графического представления радиальных функций приведены на рис. 6.
Рис. 6. Графическое представление радиальных функций
Графическое представление угловой зависимости атомных орбиталей. Для графического представления сферических функций
используются полярные диаграммы, т. е. графики функций
в сферической системе координат.
Полярная диаграмма описывает распределение вероятности локализации электрона по направлениям, заданным углами и . Легко видеть, что полярные диаграммы аксиально симметричны, если атомные орбитали характеризуются определенными значениями квантового числа
и
На рис. 7 приведены сечения полярных диаграмм плоскостью
Рис. 7. Полярные диаграммы
Изовероятностные поверхности. Соответствующее атомным орбиталям распределение плотности вероятности локализации электрона в определенной точке трехмерного пространства может характеризоваться семейством изовероятностных поверхностей (или поверхностей равной вероятности), определяемых уравнением
где С — некоторая константа.
В частности, распределение электронной плотности, соответствующее
Рис. 8. К определению изовероятностных поверхностей для 2s-АО
В качестве других примеров на рис. 9 приведены изовероятностные поверхности для 1s-, 2s-, 2p-, 3s-, 3p- и Зd-орбиталей атома водорода.
Вещественные атомные орбитали. До сих пор мы рассматривали комплексные атомные орбитали, характеризующиеся определенными значениями проекции орбитального момента импульса. Однако в квантовой химии часто используют вещественные комбинации таких орбиталей, определяемые по формулам
Здесь индекс
Если выразить
Легко убедиться, что между комплексными и вещественными атомными орбиталями существует следующее соответствие:
Поверхности, представляющие вещественные
О порядке заполнение атомных орбиталей
Как правило, порядок заполнения электронных
Рис. 9. Изовероятностные поверхности для 1s, 2s, 2p, 3s, 3p и 3d-AO, характеризуемых определенными значениями проекции момента импульса m числа на рисунке)
Однако это объяснение нельзя признать удачным. Во-первых, разница в узловой структуре орбиталей одинаковой симметрии сама по себе еще не гарантирует определенное соотношение их энергий. Во-вторых (и это самое важное!), появление локальных максимумов, обусловленных ортогональностью 4s-АО к s-орбиталям остова, следует рассматривать скорее как проявление эффекта "выталкивания" этих орбиталей из остова. Не будь условий ортогональности, 4s-орбиталь "провалилась" бы в остов, превратившись в безузловую 1s-AO, имеющую только один большой максимум на ядре. Следует также заметить, что учет условий ортогональности возможен и при использовании безузловых 4s-орбиталей, но с соответствующей заменой потенциала эффективного поля, действующего на описываемые этой орбиталью электроны, псевдопотенциалом, который отличается от исходного некоторой положительной добавкой. Иными словами, условия ортогональности должны приводить к увеличению орбитальных энергий.
Рис. 10. Изовероятностные поверхности для вещественных 1s, 2s, 2p, 3s, 3p и 3d-AO