Читаем Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи полностью

В действительности r и r' представляют собой две различные (но возможно и совпадающие) точки пространства, в которых может быть локализована одна рассматриваемая частица. При этом плотность вероятности локализации ее в некоторой точке r равна диагональному элементу . Именно эту функцию характеризуют часто используемые в квантовой химии карты распределения электронной плотности. Функция (r) содержит информацию, достаточную для вычисления математических ожиданий тех весьма многочисленных физических величин, операторы которых не включают интегрирования или дифференцирования. Например, дипольный момент d электронной системы относительно центра координат представлен одноэлектронным оператором с ядром[33]:

(4.8)

и определяется по формуле

(4.9)

Использование матрицы плотности вместо волновой функции устраняет указанную выше неоднозначность в квантовомехани-ческом описании состояния частицы. В то же время такое описание является более общим и позволяет характеризовать одночастичные состояния для систем, содержащих несколько различных или тождественных частиц, хотя точное описание этих состояний с помощью волновых функций невозможно.

Пусть некоторое состояние W-электронной системы задано антисимметричной нормированной функцией (x1,..., xN), где хi обозначает совокупность пространственных координат (ri) и спиновой переменной (i) i-гo электрона. Тогда N-электронная матрица плотности N определяется аналогично одноэлектронной (4.6):

(4.10)

Диагональные элементы матрицы плотности N характеризуют вероятность того, что первый электрон локализован в точке x1, в то время как второй — в точке х2, третий — в точке х3 и т д. Конечно, в силу неразличимости электронов их нумерация является произвольной.

Рассматриваемые N электронов могут входить в состав системы включающей также и другие частицы. Например, молекулы состоят из электронов и атомных ядер, образующих единую систему. Пусть состояние последней определяется нормированной функцией (x1,..., xN,), причем обозначает совокупность переменных всех частиц, не являющихся электронами (т. е. ядер). Состояние N-электронной системы в общем случае не может описываться -функцией и в этом смысле не является чистым[34]. Но оно может характеризоваться N-частичной редуцированной матрицей плотности:

(4.11)

Термин "редуцированная" в применении к матрице плотности означает, что некоторые переменные в левом и правом наборах ее аргументов отождествляются и затем по ним проводится интегрирование.

Подобным образом определяются редуцированные матрицы плотности для k-электронных подсистем N-электронной системы:

(4.12)

Целесообразность введения множителя обусловлена тождественностью электронов. В частности, редуцированная одноэлектронная матрица плотности определяется через N-электронную равенством

(4.13)

и нормирована на число электронов N:

(4.14)

Часто используют бесспиновую матрицу плотности

(4.15)

где проведено интегрирование (или суммирование) по спиновой переменной .

Отметим теперь некоторые используемые в дальнейшем математические свойства редуцированных матриц плотности.

Вследствие антисимметричности N-электронной функции (или ) относительно перестановок электронных переменных

(4.16)

k-частичные матрицы плотности при антисимметричны в левой и правой группах аргументов, разделенных вертикальной чертой:

(4.17a)

(4.17б)

Из определения k следует также, что

(4.18)

Учитывая сказанное на с.102 об интегральном представлении операторов , мы можем утверждать, что матрица плотности является ядром некоторого эрмитового оператора k-частичной плотности вероятности k:

He следует думать, однако, что этот оператор соответствует некоторой наблюдаемой физической величине. Его роль в квантовой теории состоит в том, что он характеризует состояние N-электронной системы в той мере, в какой это необходимо для определения ожидаемого значения любой физической величины, представленной суммой k-электронных операторов. При этом последние не зависят от состояния рассматриваемой многоэлектронной системы. Среднее значение оператора для некоторого k-электронного состояния определяет заселенность этого состояния. Собственные функции оператора называются функциями "естественных" k-частичных состояний, а собственные значения — естественными заселенностями n(k). Функции определяющие одночастичные состояния с заселенностями называются естественными спин-орбиталями и удовлетворяют уравнению

(4.20)

Бесспиновые (r), удовлетворяющие аналогичному уравнению на собственные значения матрицы плотности (r|r') называются "естественными" орбиталями.

В качестве примера рассмотрим молекулу водорода Н2. Естественные молекулярные орбитали для этой молекулы определяются исключительно из соображений симметрии (если их ищут в виде линейной комбинации двух атомных 1s-орбиталей) и классифицируются на симметричную (g) и антисимметричную (u) МО:

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже