В то же время естественные заселенности связывающего (g) и разрыхляющего (u) одноэлектронных состояний зависят от способа построения полной двухэлектронной функции молекулы Н2 из одноэлектронных (табл. 3).
Таблица 3. Естественные заселенности в молекуле H2 [35]
Матрицу плотности (r|r'), как и матрицы плотности более высокого порядка, можно представить через "естественные" заселенности и соответствующие естественные функции в виде естественного разложения:
Такое представление матрицы плотности обобщает приведенное выше выражение (4.6) для одноэлектронной матрицы плотности "чистого" состояния одного электрона с определенной -функцией. В случае многоэлектронной системы отдельному электрону уже нельзя сопоставить какую-либо функцию (r). Состояние электрона в многоэлектронной системе является "смешанным" и описывается одноэлектронной матрицей плотности (r|r') или набором функций (r) и соответствующих им "чистых" состояний. При этом вероятность пребывания электрона в состоянии, определяемом функцией , характеризуется естественной заселенностью n.
Вследствие антисимметричности многоэлектронной функции (x1,...,xN) относительно перестановок
Многоэлектронные функции (x1,...,xN) содержат очень большую информацию, значительная часть которой, как правило, не представляет физического интереса. Дело в том, что операторы, соответствующие наблюдаемым физическим величинам, являются суммами одно- и двухчастичных операторов
Каждый из операторов
Из всего сказанного выше можно сделать вывод, что использование формализма матрицы плотности в. квантовохимических расчетах должно существенно упрощать их физическую и химическую интерпретацию.
Наиболее полное и строгое изложение метода матрицы плотности в теории молекул дано в монографии М. М. Местечки на [17].
Канонические и локализованные молекулярные орбитали
Молекулярные орбитали fiопределяются обычно как собственные функции некоторого одноэлектронного гамильтониана
В качестве
В то же время каждой канонической МО соответствует одно-электронная энергия i, которая, согласно теореме Купманса, определяет потенциал ионизации молекулы, то есть энергию удаления электрона из i-гo одноэлектронного состояния в молекуле. Эти орбитали могут успешно использоваться и при оценках энергий электронных возбуждений.
В однодетерминантном приближении канонические МО являются одновременно естественными молекулярными орбиталямц в том смысле, что одноэлектронная плотность представима в виде естественного разложения: