Читаем Квантовая механика и интегралы по траекториям полностью

Теперь мы можем сформулировать квантовомеханическое правило вычисления амплитуды вероятности. Для этого необходимо установить, какой вклад вносит каждая траектория в полную амплитуду перехода из точки a в точку b. Дело в том, что вклад дают сразу все траектории, а не только та, которая соответствует экстремальному действию. При этом вклады отдельных траекторий равны по величине, но различаются значением фазы; фаза данного вклада будет равна действию S для этой траектории, выраженному в единицах кванта действия h. Таким образом, подводим итог: вероятность P(b,a) перехода частицы из точки xa, где она находилась в момент времени ta, в точку xb, соответствующую моменту времени tb, равна квадрату модуля амплитуды перехода P(b,a)=|K(b,a)|^2. Эта амплитуда представляет собой сумму вкладов [x(t)] от каждой траектории в отдельности, т.е.

K(b,a)=

[x(t)]

по всем

возможным

переходам

из a в b

(2.14)

где суммирование выполняется по всем траекториям, соединяющим точки a и b. Фаза вклада каждой траектории пропорциональна действию S:

[x(t)]=const·e

(i/h)S[x(t)]

(2.15)

Действие S здесь то же самое, что и в случае соответствующей классической системы [см. выражение (2.1)]. Константу можно, выбрать из соображений удобства нормировки величины K; это мы сделаем после того, как более строго (с математической точки зрения) рассмотрим, что понимается под суммой по всем траекториям в соотношении (2.14).

§ 3. Классический предел

Прежде чем перейти к более строгому рассмотрению, сравним наше квантовое правило с классическим. С первого взгляда остаётся совершенно неясным, каким образом в классическом приближении наиболее важной окажется всего лишь одна траектория, тогда как из выражения (2.15) следует, что все траектории вносят в амплитуду одинаковый вклад, хотя и с различными фазами. Однако классическое приближение соответствует случаю, в котором размеры, массы, интервалы времени и другие параметры системы настолько велики, что действие S во много раз превосходит постоянную h= 1,05·10-27 эрг·сек. В этом случае фаза S/h каждого парциального вклада представляет собой чрезвычайно большой угол. Действительная (или мнимая) часть функции равна косинусу (или синусу) этого угла и в равной степени может оказаться как положительной, так и отрицательной. Если теперь, как показано на фиг. 2.1, мы сдвинем траекторию на малую величину x (малую в смысле классических масштабов), то изменение действия S также будет небольшим в классическом смысле, однако отнюдь не малым при сопоставлении с величиной h. Эти небольшие изменения траектории будут, вообще говоря, приводить к огромным изменениям фазы, так что её косинус и синус совершают очень быстрые и частые колебания между положительными и отрицательными значениями. Таким образом, если одна траектория даёт положительный вклад, то другая, бесконечно близкая к ней (в классическом смысле), даёт такой же отрицательный вклад, так что в целом не возникает никакого вклада.

Фиг.2.1. Классическая траектория 1 [x=x(t)].

Это такая траектория, для которой интеграл действия S принимает минимальное значение. Если эта траектория изменяется на величину x(t) (траектория 2), то в первом приближении по x интеграл не претерпевает никаких изменений. Это и определяет уравнение движения.

В квантовой механике амплитуда вероятности перехода из точки a в точку b равна сумме амплитуд, соответствующих всем возможным траекториям. Амплитуда вероятности для заданной траектории, т.е. eiS/h, имеет фазу, пропорциональную действию. Если действие очень велико по сравнению с постоянной Планка h то для близлежащих траекторий, таких, как 3 и 4, оно лишь незначительно отличается по своей величине, однако вследствие малости постоянной h различие в фазах в этих случаях будет очень большим. Вклады от таких траекторий взаимно уничтожаются. Только в непосредственной близости к классической траектории x(t), где варьирование траекторий лишь незначительно изменяет действие S, близлежащие траектории, такие, как 1 и 2, дают вклады с одинаковыми фазами, которые вследствие интерференции усиливают друг друга. Вот почему приближение классической физики, т.е. необходимость рассмотрения только одной траектории x(t), справедливо, когда действие S очень велико по сравнению с постоянной h.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное