Читаем Квантовая механика и интегралы по траекториям полностью

§ 3. Разложение волновой функции

В § 4 гл. 3 мы ввели понятие волновой функции и рассмотрели некоторые соотношения, связывающие волновые функции и ядра. Соотношение (3.42) показывает, каким образом с помощью ядра, описывающего движение системы в промежутке между двумя моментами времени ta и tb, можно получить волновую функцию для момента tb, если известна волновая функция для более раннего момента времени ta.

Здесь это уравнение нам будет удобно записать в виде

(b)

=

K

V

(b,a)

f(a)

dx

a

,

(6.22)

где f(a) — значение волновой функции в момент времени t=ta [т.е. f(a) — функция точки xa], (b) — волновая функция для более позднего момента времени t=tb 1). Мы предполагаем также, что в промежутке между этими двумя моментами времени система движется в потенциальном поле V, где её движение описывается ядром KV(b,a).

1) Заметим, что наше условие K0(b,a) для tbta приводит к тому, что соотношение (6.22) становится непригодным, если tbta, однако в области таких значений t мы не будем пользоваться этим соотношением.

Если разложенное в ряд ядро KV [см. формулу (6.18)] подставить в соотношение (6.22), то мы получим разложение в ряд функции (b). Таким образом,

(b)

=

K

0

(b,a)

f(a)

dx

a

-

-

i

h

K

0

(b,c)

V(c)

K

0

(c,a)

d

c

f(a)

dx

a

+… .

(6.23)

Первый член этого разложения даёт волновую функцию для момента времени tb в предположении, что между ta и tb система остаётся свободной (или невозмущённой, в последнем случае ядро K0 нужно заменить ядром KU). Обозначим этот член через

(b)

=

K

0

(b,a)

f(a)

dx

a

.

(6.24)

Используя это определение, ряд (6.23) можно переписать теперь как

(b)

=

(b)

-

i

h

K

0

(b,c)

V(c)

(c)

d

c

+

+

K

0

(b,c)

V(c)

K

0

(c,d)

V(d)

(d)

d

c

d

d

+… .

(6.25)

Записанный в таком виде ряд теории возмущений называется борновским разложением функции . Если ограничиться только первыми двумя членами (т.е. учесть лишь первый порядок разложения по V), то получим первое борновское приближение. Оно соответствует единичному рассеянию на потенциале V. Это рассеяние происходит в точке c. До этой точки движение системы является свободным и описывается функцией (c), после рассеяния система снова движется как свободная от точки c до точки b и описывается ядром K0(b,c). Интеграл должен быть взят по всем возможным точкам, в которых происходит рассеяние. Когда используются три члена ряда (т.е. учитывается второй порядок по V), результат называется вторым борновским приближением и т.д.

Задача 6.4. Используя соображения, подобные тем, что привели нас к уравнению (6.19), покажите, что волновая функция (b) удовлетворяет интегральному уравнению

(b)

=

(b)

-

i

h

K

0

(b,c)

V(c)

(c)

d

c

.

(6.26)

Это интегральное уравнение эквивалентно уравнению Шрёдингера

-

h

i

x

+

h^2

2m

^2

+

V

=0.

(6.27)

Ограничившись одномерным случаем, покажите, как получить уравнение Шрёдингера из интегрального уравнения (6.27).

§ 4. Рассеяние электрона на атоме

Математическое рассмотрение. Идею метода и формулы теории возмущений мы рассмотрели пока несколько формально. Чтобы выяснить физический смысл этой теории, рассмотрим теперь конкретную задачу о рассеянии быстрого электрона на атоме.

Рассмотрим эксперимент, в котором пучок электронов бомбардирует мишень из тонкой металлической фольги, а затем попадает на соответствующий счётчик, как это показано на фиг. 6.4.

Фиг. 6.4. Эксперимент с рассеянием электронов.

Электроны, испаряющиеся с электрода в точке a собираются в пучок с помощью коллимирующих отверстий в экранах S и S' и бомбардируют далее мишень из тонкой фольги в точке O. Бо'льшая часть электронов проходит по прямой без рассеяния (если, конечно, их энергия достаточно велика, а мишень достаточно тонкая), но некоторые электроны отклоняются при взаимодействии с атомами мишени и рассеиваются, например, под углом в точку b. Если счётчик в точке a перемещать вверх и вниз, можно установить зависимость между относительным числом рассеяний и углом рассеяния .

Предположим, что энергия рассеивающихся частиц определяется методом измерения времени пролёта. Это означает, что мы фиксируем электрон, вылетающий из источника в некоторый момент времени, скажем t=0, и определяем, какова вероятность того, что он попадает в счётчик через некоторый промежуток времени, равный времени задержки T. Тогда можно непосредственно использовать наше выражение K(b,a), полученное для амплитуды перехода из одного положения в другое за некоторый определённый промежуток времени.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное