Но, невзирая на всю привлекательность этих по-копенгагенски звучащих аргументов, Белл с ловкостью дзюдоиста опроверг их, процитировав самого Бора[375]
. В той же статье, в которой Белл объявил контекстуальность главной особенностью квантового мира, он также указал, что эта особенность не должна никого удивлять: ведь, по словам Бора, невозможно провести «никакого резкого различия[376] между поведением атомных объектов и их взаимодействием с измерительными устройствами». Вы не можете заглянуть в квантовый мир, не изменив его, но это вовсе не означает, что квантового мира не существовало, пока вы в него не заглянули. Совсем наоборот: если бы его не было, вы не смогли бы изменить его в процессе наблюдения! И контекстуальное колесо рулетки может существовать – просто положение шарика будет изменяться, когда вы смотрите на него разными способами, ведь вы не можете отделить поведение шарика от его взаимодействия с вами в процессе наблюдения. Это не значит, что шарика не существует или что он не обладает никаким местоположением, пока вы на него не посмотрите; это означает, что шарик просто-напросто очень прыгучий и чувствительный, что он начинает бешено метаться даже от малейшего воздействия. Именно так и ведут себя скрытые переменные в построенной на базе волн-пилотов интерпретации Бома. Согласно Бому, частица всегда обладает определенным местоположением – но это положение может резко изменяться благодаря малым возмущениям и изменениям в экспериментальных схемах. Стоит вам, находясь в бомовском квантовом мире, задать электрону немного отличную от первоначальной серию вопросов, и вы получите совершенно не похожую на первоначальную серию ответов – но сам электрон все это время занимает вполне определенное положение[377]. И так как теория Бома контекстуальна, она остается неуязвимой для всех доказательств, которые пытаются ее опровергнуть. «Все, что доказывают эти доказательства, – заключает Белл, – это недостаток воображения»[378].Несмотря на построенную им убедительную демонстрацию того, что теория Бома не является невозможной, Белл все-таки был обеспокоен наиболее странной особенностью концепции волны-пилота: ее «скрытой нелокальностью». «В теории Бома происходили ужасные вещи, – писал Белл. – Например, траектории частиц мгновенно изменялись, как только в какой-то точке Вселенной кто-нибудь двигал магнит»[379]
. Была ли нелокальность теории Бома существенной особенностью квантовой физики? Белл поставил этот вопрос в заключительной части своей статьи, развенчивающей доказательство фон Неймана, и оставил его без ответа, указывая тем самым возможное направление дальнейшей работы.Долгое время поставленный Беллом вопрос о нелокальности оставался вне поля зрения физиков: вследствие ряда канцелярских ошибок[380]
его статья о доказательстве фон Неймана два года пролежала в столе у редактора. Но Белл не мог махнуть на этот вопрос рукой – он хотел найти ответ немедленно. В этом и заключался его новый проект. «Я, конечно, знал, что мысленный эксперимент Эйнштейна – Подольского – Розена сыграл критическую роль [в выявлении нелокальности], так как в нем возникали мгновенные корреляции на расстоянии, – вспоминал позже Белл. – Поэтому я в явном виде поставил следующую задачу: построить простую модификацию опыта Эйнштейна – Подольского – Розена, для которой можно было бы создать модель, одновременно не нарушающую квантово-механической картины и сохраняющую полную локальность»[381].В этой работе Белл использовал упрощенную схему эксперимента ЭПР, предложенную Бомом в учебнике, который он написал непосредственно перед тем, как разработал свою концепцию волны-пилота. Эта версия опыта ЭПР позволила Беллу намного упростить выстроенную им мысленную конструкцию. Вместо сталкивающихся и затем разлетающихся в разные стороны двух частиц с запутанным импульсом в построенной Бомом версии опыта ЭПР участвовали фотоны с запутанной поляризацией[382]
.Поляризация – волновое свойство света. Свет является электромагнитной волной, а его поляризация – это преимущественная плоскость колебаний этой волны. Но для наших целей важно только то, что явление поляризации связано с пространственным направлением: мы можем представить себе поляризацию в виде маленькой стрелки, привязанной к каждому фотону и указывающей то или иное направление. Однако все это не так уж просто. Во-первых, мы не можем сказать, куда именно направлена стрелка поляризации фотона. Все, что мы можем сделать, – это измерить поляризацию фотона вдоль некоторой заданной оси в некоторый момент времени. Сделать это можно несколько косвенным путем: ставя на пути фотона поляризатор (линзу из поляроидных солнечных очков). Когда фотон попадает в поляризатор, он либо проходит сквозь него, либо поглощается; и чем ближе стрелка поляризации фотона к направлению оси поляризатора, тем выше у фотона вероятность пройти сквозь поляризатор.