Читаем Квантовая случайность полностью

Можно задать вопрос, почему мы можем клонировать животных, если мы не можем клонировать квантовые системы. Ведь очевидно, что биологическая макромолекула, известная как ДНК, сама по себе является квантовой системой! Интересно, что именно этот вопрос привел нобелевского лауреата, физика Юджина Вигнера к вопросу о квантовом клонировании[27]. И он-то как раз сделал вывод о невозможности клонирования в биологии, но это была ошибка. ДНК – это действительно квантовая система (по крайней мере, на это очень похоже, и хотя это никогда не демонстрировалось в эксперименте, вряд ли хоть один физик подвергнет это сомнению). Однако генетическая информация закодирована в ДНК с использованием лишь очень малой части возможностей, разрешенных в квантовой физике, и фундаментальных препятствий к клонированию такого небольшого объема информации не существует[28]. Очень интересно ставить вопросы относительно роли квантовой физики в биологии, и это очень популярная тема для исследований.

Отступление от темы: неточное клонирование

Чтобы закончить эту главу, позвольте мне сделать несколько замечаний, которые не так важны для главной темы, но могут быть интересны любопытному читателю.

Отметим (но в этот раз без доказательства), что квантовая теория разрешает неточное клонирование, что-то вроде создания плохой копии, и что самое лучшее возможное клонирование ограничено таким условием: оно должно быть достаточно плохим, чтобы гарантировать отсутствие коммуникации без физической передачи[29].

Теорема о запрете клонирования тесно связана со многими аспектами квантовой теории. В частности, как мы писали выше, она является существенной для таких прикладных областей, как квантовая криптография (глава 7) и квантовая телепортация (глава 8). Она также необходима, чтобы знаменитые соотношения неопределенностей Гейзенберга имели какой-то смысл (справка 8). В самом деле, если бы мы смогли идеально клонировать квантовую систему, мы могли бы измерить положение, к примеру, оригинала и скорость копии. Тем самым мы получили бы и положение, и скорость частицы одновременно, что не запрещено принципом неопределенности[30].

Другое важное следствие теоремы о запрете клонирования состоит в том, что вынужденное испускание частицы, которое лежит в основе луча лазера, невозможно без спонтанного испускания частицы. Если бы это было не так, кто-то мог бы использовать вынужденное испускание фотона для того, чтобы идеально скопировать его состояние (к примеру, поляризацию). И вновь соотношение между вынужденным и спонтанным излучением находится в точности на границе оптимального клонирования, совместимого с нелокальностью без коммуникации[31]. Все складывается очень аккуратно, и квантовая теория удивительно согласованна и элегантна.

Кстати, Эйнштейн был первым, кто описал соотношение между вынужденным (индуцированным) и спонтанным излучением. Он был бы поражен, если бы узнал, что эта формула прекрасно выводится из понятия нелокальности, которой он так противился.

И последнее замечание относительно отношений между клонированием и нелокальностью. Мы видели, что невозможность коммуникации без физической передачи накладывает ограничение на качество клонирования прибора Боба. Что произойдет, когда мы заменим игру Белла игрой (или неравенством), в которой Боб имеет больше возможностей? Представим, например, что джойстик можно двигать в n направлениях. В этом случае невозможность коммуникации без передачи накладывает предел на клонирование прибора Боба в n копиях, и мы снова приходим к пределу оптимального квантового клонирования. Из этого следует, что для демонстрации нелокальности и Бобу, и Алисе нужно иметь большее число возможных выборов, чем приборов, чтобы выбор был настоящим. Они не могут просто сделать все выборы параллельно[32]. Здесь мы впервые видим важность свободной воли, или, выражаясь прозаичнее, важность того, что Алиса и Боб могут делать выбор независимо друг от друга. Без независимого выбора не существовало бы нелокальности.

Глава 5

Квантовая запутанность

В квантовой физике объяснением возможности победы в игре Белла в смысле получения счета больше 3 является запутанность. Эрвин Шрёдингер, один из отцов-основателей квантовой физики, был первым, кто заметил, что запутанность – это не просто одна из черт квантовой физики среди прочих, а ее основная характеристика[33]:

Запутанность – это не просто одна из особенностей, а скорее определяющая характеристика квантовой механики, та, что заставляет нас полностью отойти от классического способа мыслить.

В этой главе мы рассмотрим это замечательное свойство мира атомов и фотонов[34].

Квантовый холизм

Перейти на страницу:

Похожие книги

Древний Египет
Древний Египет

Прикосновение к тайне, попытка разгадать неизведанное, увидеть и понять то, что не дано другим… Это всегда интересно, это захватывает дух и заставляет учащенно биться сердце. Особенно если тайна касается древнейшей цивилизации, коей и является Древний Египет. Откуда египтяне черпали свои поразительные знания и умения, некоторые из которых даже сейчас остаются недоступными? Как и зачем они строили свои знаменитые пирамиды? Что таит в себе таинственная полуулыбка Большого сфинкса и неужели наш мир обречен на гибель, если его загадка будет разгадана? Действительно ли всех, кто посягнул на тайну пирамиды Тутанхамона, будет преследовать неумолимое «проклятие фараонов»? Об этих и других знаменитых тайнах и загадках древнеегипетской цивилизации, о версиях, предположениях и реальных фактах, читатель узнает из этой книги.

Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс

Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Искусство ведения войны. Эволюция тактики и стратегии
Искусство ведения войны. Эволюция тактики и стратегии

Основоположник американской военно-морской стратегии XX века, «отец» морской авиации контр-адмирал Брэдли Аллен Фиске в свое время фактически возглавлял все оперативное планирование ВМС США, руководил модернизацией флота и его подготовкой к войне. В книге он рассматривает принципы военного искусства, особое внимание уделяя стратегии, объясняя цель своего труда как концентрацию необходимых знаний для правильного формирования и подготовки армии и флота, управления ими в целях защиты своей страны в неспокойные годы и обеспечения сохранения мирных позиций в любое другое время.

Брэдли Аллан Фиске , Брэдли Аллен Фиске

Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное