Грубо говоря, странная теория квантовой физики говорит нам, что вполне возможно и даже обычно для двух разделенных пространством объектов образовывать в действительности единое целое! Это и называется запутанностью. Если мы потревожим одну из двух частей, среагируют обе. Но заметьте прежде всего, что, когда мы «стимулируем» квантовую сущность, то есть проводим измерение, она выдает ответ – реакцию – совершенно случайным образом, один результат из определенного диапазона возможностей, с хорошо определенной вероятностью, которую квантовая теория предсказывает с великолепной точностью. Так как это случайное событие, никто не может использовать то, что связанная сущность реагирует как целое, для передачи информации. Приемник будет получать лишь шум, чисто случайное трепетание. Мы снова убеждаемся в важности истинной случайности. Вы можете возразить, что если мы не трогаем первый объект, то второй так и останется в покое. Раз так, можно посылать информацию, просто делая выбор – воздействовать на первый объект или нет. Но есть проблема: откуда мы узнаем, что второй объект отреагировал? Мы можем узнать об этом лишь проведя измерение, а это само по себе заставит его «дернуться». Короче говоря, не важно, насколько противоестественно это звучит, но мы не можем запросто опровергнуть идею, что два запутанных объекта по сути составляют единое целое.
Теоретически запутанным может быть любой объект, но на практике физики продемонстрировали запутанность атомов, фотонов и некоторых элементарных частиц. Самые большие объекты, которые удалось связать, – это кристаллы, вроде тех, из приборов для игры Белла. Этот феномен проявляет себя примерно одинаково вне зависимости от того, какие объекты оказались запутанными. Мы будем иллюстрировать это почти волшебное свойство квантового мира на примере электронов – крошечных частиц, которые переносят электрический ток.
Квантовая неопределимость
Я начну с примера. Электрон может оказаться в состоянии, в котором его положение невозможно определить. То есть у него просто нет точного местонахождения, как у облака. Естественно, у облака есть среднее положение (положение центра массы, как сказали бы физики). У электрона тоже есть некая средняя позиция. Но, и в этом значительное отличие от облака, электрон не сделан из множества микроскопических капелек воды, и вообще из какого-либо рода капелек. Электрон неделим. А еще, помимо того что он неделим, у него нет определенного положения, а только облако возможных положений. Если, несмотря на это, мы решим измерить его положение, электрон тут же ответит: «Я здесь!» Но это будет ответ, созданный в момент измерения и совершенно случайный. У электрона не было определенного положения, но во время измерения мы заставили его ответить на вопрос, который до тех пор не имел ответа: квантовая случайность это истинная, нередуцируемая случайность.
Формально говоря, неопределимость выражается посредством того, что известно как принцип суперпозиции. Если электрон может быть здесь или в метре отсюда, тогда этот электрон может быть в состоянии суперпозиции «здесь» и «на метр правее», то есть и «здесь», и «на метр правее». В этом примере он делокализован и находится в двух местах одновременно. Он может ощущать, что происходит здесь (например, в одной из щелей Янга[35]
), и ощущать, что происходит на метре правее, во второй щели Янга. Таким образом, он действительно находится и здесь, и в метре справа. Однако, если мы измерим его положение, мы обнаружим его только в одном из этих мест, причем совершенно случайным образом.Квантовая запутанность
Мы только что увидели, что у отдельного электрона может не быть положения. Точно так же определенного положения может не быть и у каждого из двух квантово запутанных электронов. Однако благодаря запутанности расстояние между двумя электронами все же может быть точно определенным. Можно сказать, что, когда бы мы ни измерили положения двух электронов, мы получаем два результата, каждый из которых совершенно случаен, но их разность все время будет одна и та же! Иначе говоря, относительно своих средних положений два электрона всегда дадут один и тот же результат, хотя этот результат и является истинно случайным. Если один электрон обнаружен чуть правее от среднего положения, второй также будет найден чуть правее и на точно таком же малом расстоянии, как и первый, то есть на том же самом расстоянии от его центра массы. И этот порядок не будет нарушен, даже если два электрона удалены очень далеко друг от друга.
Таким образом, положение одного электрона относительно второго хорошо определено, хотя мы и не знаем точно позиции каждого из них. В общем случае запутанные квантовые системы могут находиться в точно определенном состоянии, даже если состояние каждой в отдельности неопределимо. Когда измерения производятся на двух запутанных системах, результаты определяются случаем – но одним и тем же случаем! Квантовая случайность нелокальна.
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и ЭнциклопедииБрэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное