То, что у электрона всегда есть конечная возможность перескочить из одной ямы в другую, означает, что две верхние волновые функции на рис. 8.1 не могут соответствовать электрону с определенной энергией, потому что из главы 6 нам известно, что такой электрон описывается стоячей волной, форма которой не меняется со временем, или набором циферблатов, размеры которых не меняются со временем. Если с течением времени в изначально пустой яме образуются новые циферблаты, форма волновой функции, разумеется, также изменяется. Итак, состояние определенной энергии соответствует двойной яме? Ответ таков: состояния должны быть более демократичными, выражая равную возможность обнаружения электрона в любой из ям. Это единственный способ образовать стоячую волну и не дать волновой функции метаться туда-сюда, от одной ямы к другой.
Две нижние волновые функции с рис. 8.1 как раз обладают этим свойством. Именно так и выглядят самые низкие энергетические состояния. Это единственные представимые стационарные состояния, которые выглядят как
Если ямы достаточно глубоки или атомы достаточно удалены, то две энергии будут почти равны, при этом они станут почти равны самой низкой энергии частицы, удерживаемой в одиночной изолированной яме. Не нужно беспокоиться по поводу того, что одна из волновых функций словно бы встала с ног на голову: не забывайте, что при определении вероятности найти частицу в каком-либо месте значение имеет только размер циферблата. Иными словами, мы можем обратить все нарисованные в этой книге волновые функции и при этом нисколько не изменить их физического содержания. «Частично вставшая на голову» волновая функция (на рисунке она подписана как «антисимметричное энергетическое состояние») поэтому продолжает описывать равную суперпозицию электрона, удерживаемого в левой яме, и электрона, удерживаемого в правой яме. Но важно заметить, что симметричная и антисимметричная волновые функции не полностью совпадают (и не должны, а то Паули бы расстроился). Чтобы убедиться в этом, достаточно посмотреть на поведение этих двух волновых функций самой низкой энергии в области между ямами.
Одна волновая функция симметрична по отношению к центру двух ям, а другая антисимметрична (так они и помечены на рисунке). Под симметрией мы имеем в виду то, что левая волна зеркально отражает правую. Под антисимметрией – то, что левая волна будет зеркальным отражением правой только после того, как повернется вверх ногами. Терминология не так важна. Важно то, что в области между двумя ямами эти волны различаются. Именно эта незначительная разница и показывает, что они описывают состояния с очень мало различающимися энергиями, но все же различающимися. Поэтому поворот одной из волн вверх ногами действительно имеет значение, но очень небольшое, если ямы достаточно глубоки или достаточно взаимоудалены.
Если считать, что частицы имеют определенную энергию, можно запутаться, потому что, как мы только что выяснили, они описываются волновыми функциями, имеющими одинаковый размер в обеих ямах. Это подразумевает равную вероятность обнаружения электрона в обеих ямах, даже если эти ямы разделяет вся Вселенная.
Как изобразить происходящее в том случае, когда мы помещаем один электрон в одну яму, а второй электрон в другую? Мы уже говорили, что ожидаем наполнения изначально пустой ямы циферблатами, что будет отображать вероятность того, что частица может перескочить с одной стороны на другую. Мы даже намекнули на ответ, сказав, что волновая функция «размазывается» туда-сюда. Чтобы увидеть, как это происходит в действительности, заметим, что можно выразить состояние, локализованное на одном из протонов, через сумму двух волновых функций с самой низкой энергией. Мы показали это на рис. 8.2, но что это значит? Если электрон находится в определенное время в конкретной яме, это предполагает, что у него отсутствует определенная энергия. А именно: измерение его энергии даст значение, равное одному из двух возможных значений, соответствующих двум состояниям определенной энергии, которые образуют волновую функцию. Таким образом, электрон находится в двух энергетических состояниях. Мы надеемся, что на этой стадии книги подобная идея вам уже не в новинку. Но вот что интересно: поскольку эти два состояния обладают не совсем одинаковой энергией, стрелки их циферблатов вращаются с немного разной скоростью.
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное