Это имеет глубокие последствия для реальной системы из двух протонов и двух электронов – то есть двух атомов водорода. Помните, что в реальности два электрона могут находиться на одном энергетическом уровне, если имеют противоположные спины. Это значит, что они оба могут поместиться на самом низком (симметричном) энергетическом уровне, а самое главное – что этот уровень теряет энергию, когда атомы сходятся. Следовательно, для двух удаленных атомов сближение будет энергетически благоприятно. Именно так и происходит в природе[38]
: симметричная волновая функция описывает систему, в которой электроны распределены между двумя протонами более ровно, чем можно было бы ожидать от «отдаленной» волновой функции, и, поскольку эта «распределяющая» конфигурация обладает низкой энергией, атомы притягиваются друг к другу. Это притяжение в какой-то момент прекращается, поскольку оба протона заряжены положительно и как таковые не могут не отталкиваться (и из-за равных зарядов электронов в том числе), но это отталкивание превосходит межатомное притяжение лишь на расстояниях меньше 0,1 нм (при комнатной температуре).В результате пара атомов водорода в состоянии покоя окажется вместе. У этой пары связанных атомов водорода есть свое название: это молекула водорода.
Прикрепление двух атомов друг к другу посредством обмена электронами носит название
Вернемся к верхней волновой функции на рис. 8.3: примерно так выглядит ковалентная связь в молекуле водорода. Помните, что высота волны соответствует вероятности нахождения электрона в конкретной точке[39]
. Над каждой ямой, то есть вокруг каждого протона, наблюдается пик, и это сообщает нам, что каждый электрон все еще более вероятно найти вблизи одного или другого протона. Но при этом существует и значительная вероятность того, что электроны будут располагаться и между протонами.Химики говорят, что при ковалентной связи атомы «делят друг с другом» электроны, и это мы здесь и наблюдаем – даже в нашей модели с двумя ямами. Помимо молекулы водорода, тенденцию атомов делиться электронами мы видели, говоря о химических реакциях.
Этот вывод нас полностью удовлетворяет. Мы выяснили, что для атомов водорода, расположенных очень далеко друг от друга, тонкие различия между двумя самыми низкими энергетическими состояниями имеют лишь академический интерес, хотя они и навели нас на мысль о том, что каждый электрон во Вселенной знает обо всех остальных ее электронах. И эта мысль просто завораживает. С другой стороны, два состояния начинают все дальше расходиться, когда протоны сходятся, и более низкое состояние начинает со временем описывать уже молекулу водорода. Теперь в дело включается не просто академический интерес, потому что ковалентная связь – причина того, что вы не просто множество атомов, размазанных в бесформенную кучу.
Продолжим эту интеллектуальную линию и подумаем, что происходит, когда вместе собирается более двух атомов. Три больше двух, так что начнем с рассмотрения трехъямного потенциала, показанного на рис. 8.5. Как обычно, нужно представить, что каждое углубление – это атом. Здесь должно быть три самых низких энергетических состояния, но при взгляде на рисунок легко решить, что на каждое состояние одиночного колодца приходится по четыре. Те четыре состояния, которые мы имеем в виду, показаны на рисунке и соотносятся с волновыми функциями, которые либо симметричны, либо антисимметричны по отношению к центру двух потенциальных барьеров[40]
. Этот подсчет не может быть верным, потому что иначе получилось бы, что в этих четырех состояниях могли бы находиться четыре одинаковых фермиона, нарушая тем самым принцип Паули. Чтобы принцип Паули соблюдался, энергетических состояний должно быть только три – и их, разумеется, именно столько.Рис. 8.5. Тройная яма, моделирующая ряд из трех атомов, и возможные волновые функции с самой низкой энергией. Внизу показано, как из трех остальных волн можно получить нижнюю
Чтобы убедиться в этом, нужно отметить, что мы всегда можем записать одну из четырех волновых функций на этом рисунке как сочетание трех других. В нижней части рисунка показано, как это работает в данном случае; мы продемонстрировали, как получить последнюю волновую функцию путем сложения и вычитания трех остальных.
Определив три самых низких энергетических состояния для частицы, находящейся в трехъямном потенциале, можем задаться вопросом, как в данном случае будет выглядеть рис. 8.4, и не удивляться, что выглядеть его аналог будет очень похоже – только пара разрешенных энергетических состояний превратится в трио.
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное