Читаем Квантовые миры и возникновение пространства-времени полностью

Традиционный способ обойти эту проблему – всячески выкручиваться с правилами квантовой механики. Согласно одним подходам, уравнение Шрёдингера применимо не всегда, другие трактовки таковы, что кроме волновой функции требуется учитывать иные переменные. Копенгагенская интерпретация с самого начала запрещает считать измерительный прибор частью квантовой системы, а коллапс волновой функции трактует как отдельный способ эволюции квантового состояния. Так или иначе, все подходы сопряжены с ухищрениями, лишь бы не считать суперпозиции, подобные вышеописанной, истинным и полным описанием природы. Как впоследствии выразился Эверетт, «Копенгагенская интерпретация безнадежно неполна, поскольку априори опирается на классическую физику… кроме того, со своей концепцией “реальности” макроскопического мира и отказом в ней миру микрокосмоса она чудовищна в философском отношении».

Эверетт предлагал простой выход: прекратить изворачиваться. Принять ту реальность, которая раскрывается в уравнении Шрёдингера. Обе части конечной волновой функции действительно существуют. Они просто описывают отдельные, более никогда не пересекающиеся миры.

Эверетт не привносил в квантовую механику ничего нового, а, напротив, удалил некоторые избыточные громоздкие части ее формализма. По выражению физика Теда Банна, любая неэвереттовская версия квантовой механики – это теория об «исчезающих мирах». Если вас не устраивает множественность миров, то придется повозиться либо с природой квантовых состояний, либо с их обычной эволюцией, чтобы от этих миров избавиться. Стоит ли игра свеч?

⚪ ⚪ ⚪

Здесь назревает вопрос. Нам известно, как волновые функции представляют суперпозиции различных возможных результатов измерений. Волновая функция электрона может поместить его в суперпозицию различных возможных координат, а также в суперпозицию верхнего и нижнего спинов. Но у нас не возникает искушения сказать, что каждое из слагаемых суперпозиции существует в отдельном «мире». Действительно, такое утверждение было бы непоследовательным. Электрон, находящийся в чистом состоянии верхнего спина по вертикальной оси, находится в суперпозиции верхнего и нижнего спинов относительно горизонтальной оси. Сколько же миров описывает такая волновая функция – один или два?

Эверетт подумал, что логически непротиворечиво предположить следующее: суперпозиции, в которые вовлечены макроскопические объекты, описывают разные миры. Но на тот момент, когда он это писал, у физиков еще не было достаточного технического оснащения, чтобы эта идея могла оформиться окончательно. Понимание пришло позже, когда удалось осмыслить феномен под названием «декогеренция». Идея декогеренции, предложенная в 1970 году немецким физиком Хансом Дитером Цехом, заняла центральное место в представлениях ученых о квантовой динамике. Для современного эвереттианца декогеренция – абсолютно необходимый элемент для осмысления квантовой механики. Она раз и навсегда объясняет кажущийся «коллапс» волновой функции при измерении квантовых систем – а также что на самом деле представляет собой «измерение».

Мы знаем, что существует всего одна волновая функция – волновая функция Вселенной. Но говоря об отдельных микроскопических частицах, мы учитываем, что они могут оказаться в таких квантовых состояниях, которые не будут запутаны со всем остальным миром. В таких случаях разумно говорить о «волновой функции данного конкретного электрона» и так далее, держа в уме, что это всего лишь удобное упрощение, допустимое при изучении систем, не запутанных с чем-либо еще.

С макроскопическими объектами все не так просто. Рассмотрим наш аппарат для измерения спина и предположим, что мы поместили его в суперпозицию, измерив верхний и нижний спины. На циферблате этого прибора есть стрелка, указывающая либо вверх, либо вниз. Подобный аппарат не отделен от всего остального мира. Даже если кажется, что он просто стоит на месте, в него постоянно врезаются молекулы воздуха, от него отскакивают фотоны видимого света и так далее. Назовем прочую материю – то есть всю остальную Вселенную – средой. В обычных ситуациях невозможно предотвратить взаимодействие макроскопического объекта с окружающей средой, даже если делать все очень аккуратно. Вследствие этих взаимодействий аппарат оказывается запутан с окружающей средой: например, фотон отразится от него, если стрелка будет в одном положении, но будет поглощен, если стрелка будет указывать куда-то еще.

Таким образом, волновая функция, записанная выше, где аппарат был запутан с кубитом, не отражала всю ситуацию целиком. Заключив состояния среды в фигурные скобки, мы должны были бы записать:

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное