В данном случае не важно, каковы именно состояния окружающей среды, поэтому мы изобразили их как разный фон и обозначили {C0}, {C1} и {C2}. Мы не будем (и как правило, не сможем) отслеживать, что именно происходит в среде, – это слишком сложно. Дело не ограничивается тем, что единственный фотон по-разному взаимодействует с разными компонентами волновой функции аппарата, – фотонов будет огромное множество. Никто не может отследить действия каждого фотона и каждой частицы в комнате.
Этот простой процесс – когда макроскопические объекты запутываются с окружающей средой, которую мы не можем отследить, – и называется декогеренцией, следствия которой меняют всю Вселенную. Декогеренция вызывает разделение, или
Мы не знаем, как часто происходит ветвление и разумно ли вообще задавать этот вопрос. Все зависит от того, конечно или бесконечно число степеней свободы во Вселенной, и на этот вопрос фундаментальная физика сегодня ответа не дает. Но мы знаем, что ветвление происходит очень активно: оно случается всякий раз, когда квантовая система, находящаяся в суперпозиции, запутывается с окружающей средой. В теле человека каждую секунду происходит радиоактивный распад примерно 5000 атомов. Если при каждом акте распада волновая функция делится надвое, это означает, что каждую секунду возникает 25000 новых ветвлений. Это чрезвычайно много.
Все-таки что же такое «мир»? Мы только что записали всего одно квантовое состояние, описывающее спин, аппарат и окружающую среду. Почему мы говорим, что это состояние описывает два мира, а не один?
Хорошо бы, чтобы в одном мире соблюдалось следующее условие: его разные части, по крайней мере, могут влиять друг на друга. Рассмотрим такой сценарий «призрачного мира» (не как описание реальности, а в качестве запоминающейся аналогии): умирая, любое существо превращается в призрак. Эти призраки могут видеть друг друга и общаться друг с другом, но не могут видеть нас и говорить с нами – то же касается и нас. Они живут на отдельной Призрачной Земле, где могут строить себе призрачные дома и ходить на свою призрачную работу. Но ни они, ни их окружение не могут взаимодействовать с нами и окружающей нас материей каким-либо образом. В данном случае разумно говорить, что призраки населяют по-настоящему отдельный призрачный мир, по той фундаментальной причине, что любые события призрачного мира абсолютно никак не влияют на события, происходящие в нашем мире.
Теперь применим такой же критерий к квантовой механике. Нас не интересует, могут ли спин и прибор, его измеряющий, влиять друг на друга, – очевидно, могут. Нас волнует, может ли один компонент, скажем, волновой функции аппарата (например, элемент функции, где стрелка на циферблате указывает вверх) влиять на другой компонент – скажем, на тот, где стрелка указывает вниз. Ранее мы уже сталкивались ровно с такой ситуацией – той, в которой волновая функция влияет сама на себя, – когда рассматривали феномен интерференции в эксперименте с двумя щелями. Когда мы пропускали электроны через две щели, не фиксируя, через которую из щелей они прошли, на экране за щелями мы наблюдали интерференционные полосы – и приписывали такой эффект взаимному гашению и усилению тех вероятностных вкладов, которые поступают от обеих щелей. Критически важно следующее: в данном случае подразумевалось, что электрон по пути к экрану не взаимодействовал и не запутывался с чем бы то ни было, то есть декогеренция не происходила.
Если же, напротив, мы фиксировали, через какую из щелей прошел электрон, интерференционные полосы исчезали. На тот момент мы связывали это с самим фактом измерения, в результате которого волновая функция электрона коллапсировала, и он проходил ровно через одну из двух щелей. Но Эверетт рассказывает нам гораздо более убедительную историю.
На самом деле электрон запутывался с детектором, проходя через щель, а детектор после этого быстро запутывался с окружающей средой. Этот процесс аналогичен вышеописанному процессу со спином, с той лишь разницей, что на этот раз мы измеряли, через какую из щелей прошел электрон – левую (L) или правую (R):