Другие сенсорные карты тоже учитывают дополнительные параметры. Хотя соматосенсорные карты, такие как S1, в целом организованы в соответствии с координатами, задаваемыми поверхностью тела, они отображают и многие другие параметры тактильной информации. К ним относятся разные физические характеристики прикосновения (давление, вибрация и колебание), а также боль, тепло и холод[268]
. Эти параметры могут быть специфическими для конкретного существа или конкретной части тела. Например, на картах S1 существ с вибриссами увеличены зоны, которые отображают прикосновение к каждому усику. Если рассмотреть с увеличением одну из таких зон, мы обнаружим большой объем информации об отклонении вибриссы, то есть о ее движении влево и вправо или вверх и вниз по отношению к положению в покое при контакте с предметами, находящимися прямо перед животным. На самом деле в зоне каждой конкретной вибриссы на карте S1 ученые обнаружили еще одну крохотную карту, выстроенную радиальным образом по типу завитка в соответствии с направлениями отклонения вибриссы[269].Вероятно, вам кажется, что тонкая структура карт мозга сложна для понимания и они напоминают загадки субатомного строения о локализации кварков и электронов. Такие микроструктуры могут быть предметом отдельной книги, однако для наших целей достаточно знать, что мозг в мелком масштабе (порядка десятых долей миллиметра, примерно сотых долей дюйма) имеет одновременно тонкую и сложную структуру. По размеру элементы этой структуры сравнимы с линиями на человеческих отпечатках пальцев, и, как рисунок отпечатков пальцев, паттерны организации карт мозга у всех людей строятся по одинаковым правилам, но каждая уникальна.
В контексте чтения мыслей эта уникальность усложняет ситуацию, как и другие различия между вашим и моим мозгом. Как мы видели, особенности строения наших мозговых карт различаются. Например, у нас могут быть разные когнитивные стратегии и возможности создания мысленных образов. И хотя микроструктура карт вашего мозга организована по тем же правилам и создает тот же рисунок, что и у меня, детальное расположение паттернов уникально. И поэтому, если задача технологии заключается в получении доступа
Я выскажусь откровенно: мы никогда не создадим технологию, которая откроет доступ ко всей информации, отображенной в мозге другого человека. Не потому что этой информации очень много, а потому что она спрятана в бесконечном количестве нейронов, организованных в виде специфических полос, капель и завитков и взаимодействующих между собой специфическим и часто изменчивым образом. Чтобы получить доступ
Упомянутые компромиссы обусловлены тремя специфическими трудностями: насколько четко мы можем регистрировать активность отдельных нейронов, можем ли мы получать информацию от нейронов по всему мозгу и способны ли переносить данный алгоритм с одного уникально устроенного мозга на другой. Рассмотрим первую трудность: нам нужен максимально четкий сигнал от каждого нейрона мозга. Чем ближе мы подойдем к определению активности отдельных нейронов в любой момент времени, тем точнее будет информация, которую мы сможем из этой активности извлечь. Благодаря картам мозга мы много знаем о том, что, вероятнее всего, делают нейроны на основании их расположения в мозге. Но из-за сложной микроструктуры рисунка, такой как полосы или завитки, даже соседние нейроны могут отображать разное. Единственный способ измерить активность отдельных нейронов состоит в том, чтобы ввести электроды непосредственно внутрь мозга. А это сопряжено со вскрытием черепа и физическим воздействием на мозг человека. Это огромный недостаток. Еще один серьезный недостаток заключается в том, что каждый электрод регистрирует активность лишь нескольких нейронов. Достаточно легко ввести в мозг большое количество электродов, однако существует некий практический предел для количества нейронов и участков мозга, к которым можно подвести электроды, не повредив мозг и не убив человека.