Прежде, чем мы оставим этот предмет, отметим еще одну более тонкую форму оптимизации. Мы говорим о практике прогонки исторических данных через компьютер для нахождения "сезонности". Существует горстка известных трейдеров/авторов, которые предоставляют данные тестирования, демонстрирующие, что, если бы вы покупали конкретный товар в конкретный день каждый год и продавали его в другой конкретный день, вы бы увеличили свой доход в х раз. Это просто нонсенс, который не имеет абсолютно никакого статистического смысла или применения в торговле. Если мы захотим, аналитические возможности компьютера позволят нам оптимизировать данные вместо системы. Данные рассматриваются очень маленькими сегментами для получения точных дат, которые лучше всего подходили бы системе. Вместо подгонки под кривую системы, мы можем подогнать под кривую данные. Конечно, существует множество очевидно логичных и иногда пригодных для использования долгосрочных сезонностей (например, ежегодные падения цен во время сбора урожая), но остерегайтесь доводить следование сезонностям до абсурда. Любая сезонная рекомендация по торговле, более специфичная, чем указание лучшего месяца для торговли, должна восприниматься с большим подозрением.
Выбор периода тестирования
Другой важной и часто недооцениваемой областью является выбор периода тестовых данных. По крайней мере, период тестирования должен быть достаточно продолжительным для проведения минимум 30 торгов на каждом рынке. Получение менее 30 торгов нарушает одно из основных правил теории выборок, которое гласит, что должно существовать по меньшей мере 30 точек данных для того, чтобынабор данных отвечал нормальному распределению. Отметьте, что это касается не дней, недель или месяцев данных, а происшедших торгов. Любое число менее 30 произведет статистически ненадежные результаты. Чем больше количество торгов, тем лучше.
Не менее важно, чтобы рыночные периоды, которые вы тестируете, включали в себя как можно больше примеров всевозможных рыночных условии. Направления вверх, вниз и вбок являются простейшими (хотя и субъективными) примерами возможных рыночных условий. Исследуемый вами период должен содержать как можно боль-1 ше примеров. Нашей целью является моделирование возможных условий будущего путем включения максимального числа рыночных условий прошлого. Если тестовый период представлен только несколькими годами данных, это может повлечь за собой проблемы. Например, если рынок акций не имел периода серьезного падения цен, и соответственно на представленных данных по фьючерсам на фондовые индексы также не было серьезных падений, то тестирование на таких данных будет отдавать предпочтение системам с бычьим уклоном. За все время своего существования рынки фондовых индексов не дают данных достаточно, чтобы отвечать рыночным условиям будущего. Рынок нефти, с другой стороны, продемонстрировал нам разнообразие в значительно большей степени, и можно ожидать, что на его данных можно произвести более здоровую и устойчивую торговую систему. Давайте разъясним это иначе: результаты короткого периода тестирования на данных рынка сырой нефти могут дать более правдоподобные результаты, чем более продолжительный период тестирования на индексах акций, потому что данные фондовых индексов пока содержат очевидный восходящий уклон. Система, основанная на покупках на рынке фондовых индексов, вероятно, даст лучшие результаты по сравнению с системой только продаж. Однако, как однажды заметил Йоги Берра: "Будущее не повторяется".
Интересное следствие заключается в том, что система никогда не должна иметь уклона одну из сторон рынка. Очевидно, за несколькими достопримечательными исключениями, большая часть доходов на фондовых индексах будет приходиться на длинную сторону рынка. Это не означает, что торговая система должна отдавать предпочтение этой стороне. Система не должна иметь собственного мнения или уклона в какую бы то ни было из сторон рынка. Если это кажется очевидным, вспомните, что в 70-х большая часть доходов на товарных рынках была получена на длинной стороне. Множество торговых систем, разработанных в этот период, стали по существу системами бычьего рынка. Простейшим способом улучшить ваши результаты на этом периоде было сократить или вообще избавиться от коротких позиций. Мы подозреваем, что этот бычий уклон был принципиальной причиной слабой производительности многих консультантов по товарным рынкам в начале 80-х.