Поскольку, отношение Шарпа имеет определенные недостатки, были разработаны другие статистические приемы для беспристрастной оценки производительности. Наиболее популярным из таковых является отношение убытка к размеру отдачи. Отношение Стерлинга было создано Дианом Джонсом из Jones Commodities. Формула следующая:
Основным недостатком отношения Стерлинга является то, что оно обычно вычисляется ежегодно и, следовательно, слишком медленно реагирует на изменения производительности.
Отношение Калмара (The Calmar Ratio)
Отношение Калмара, изобретенное Терри Янгом из СМА Reports, представляет собой размер отдачи за последние 36 месяцев, поделенный на максимальный убыток на том же периоде. Оно вычисляется ежемесячно, что делает его более чувствительным, чем отношение Стерлинга,
Среднее геометрическое
Наверное, самым математически точным измерением потенциала торговой системы является среднее геометрическое Ральфа Вайнса. Среднее геометрическое измеряет фактор роста вашей торговой системы. Чем выше среднее геометрическое, тем более вероятно, что ваша система будет давать большую отдачу при дополнительном инвестировании. Для любой системы со средним геометрическим более 1 вы можете увеличить отдачу на ваш счет до максимума путем вычисления оптимальной f, оптимальной фиксированной части вашего наибольшего проигрыша, для использования в качестве ставки на каждой торговле. У нас нет места для вывода геометрического среднего и оптимальной f, мы также не можем разъяснить все с той же элегантностью, что и Вайнс. Мы считаем, что его книга является одним из самых значительных достижений в области управления денежными средствами на фьючерсных рынках.
Заметьте, что ваша система может быть прибыльной на большинстве рынков и убыточной на нескольких из них. Один наш знакомый консультант по товарной торговле проводит операции на всех рынках, которые он тестировал (выигрышных и убыточных), и утверждает, что кривая изменения его счета становится глаже от этого разнообразия. Он умышленно ищет отрицательную корреляцию между товарами в портфеле и находит, что прибыльные периоды на его проигрышных рынках обычно совпадают с проигрышными периодами на его выигрышных рынках. Торговая система не будет прибыльной на всех рынках постоянно. Если вы ее правильно разработали, то убытки на проигрышных рынках будут минимальными, и, кроме того, эти рынки будут время от времени давать прибыльные периоды.
Будьте осторожны при тестировании большого количества рынков, а затем конструировании портфеля на одних только выигрышных контрактах. Это обычный прием поставщиков систем, когда результаты являются чистой фантазией, несмотря на то что это может произвести впечатляющую запись о вашей исторической производительности. Это, очевидно, является еще одной формой подстраивания под кривую.
Тестирование для получения определенных результатов
Торговую систему необходимо разрабатывать с нуля, чтобы она достигла определенных значений критериев производительности. Вероятно, наиболее важными из возможных целей являются процент выигрышей и отношение среднего выигрыша к среднему проигрышу. Эти критерии могут быть использованы для вычисления вероятности провала (FOR - probability of ruin), которая дает вам некоторое представление о надежности вашей системы. Большая часть программного обеспечения для тестирования дает и другие полезные данные. Ниже приведено их перечисление с комментариями.
Совокупный доход (Net Profit)
Совокупный доход является переоцененной мерой успеха по нескольким причинам. Во-первых, убедитесь, что несколько больших торгов не отклонили ваши результаты. Вы же не хотите использовать систему, успех которой зависит от неповторяющихся событий (типа угла Ханта на рынке серебра или падения фьючерсов на сахар на 63 цента).
Не надо думать, что в реальном времени ваша система будет воспроизводить что-либо подобное совокупному доходу из ваших тестов. Неправильно планировать будущие результаты на основе прошлых - мы знаем, что они не повторятся. Вы можете только убедиться, что ваша система готова справиться с большей частью предсказуемых рыночных условий будущего.
Количество торгов на тестовой выборке (Number of Trades in the Test Sample)
Общее количество должно превосходить 30 для уверенности в статистической значимости результатов. Даже если вы тестировали 25 лет данных и не получили по крайней мере 30 торгов, ваши результаты будут неубедительны. Мы однажды слушали лекцию о работоспособности индикатора рынка акций, который производил одну торговлю каждые 40 лет. Нам бы хотелось увидеть результаты тестирования за 1200 лет, чтобы этот метод произвел на нас впечатление. Чем больше у вас получилось торгов, тем лучше.
Наибольшая выигрышная и наибольшая проигрышная торговля (Largest Winning and Largest Losing Trade)