На структуру и биохимию тканей нервной системы оказывают влияние инфекционные, токсические агенты, патологические процессы, связанные с травмами, воздействием ионизирующего излучения, недостаточным снабжением кровью. При действии различных патогенных факторов, прежде всего, нарушается структура и функция мембран нервных клеток. Основной механизм такого повреждение – перекисное окисление липидов клеточных мембран. В норме этот процесс играет защитную роль, окисляя чужеродные вещества, регулируя функции клеточных мембран. Он контролируется антиокислительной системой с ее специфическими ферментами (супероксидисмутаза) и веществами, которые подавляют окисление (а – токоферол, аскорбиновая кислота, убихинон, восстановленный глютатион и др.). Но при недостатке кислорода, токсических и инфекционных повреждениях процессы перекисного окисления липидов выходят из-под контроля, становятся избыточными и влекут за собой цепи биохимических реакций, нарушающих нормальный обмен веществ в тканях и функцию клеточных мембран. Образующиеся перекиси и продукты свободнорадикального окисления сами обладают токсическими свойствами и усугубляют уже существующие нарушения.
Клеточная мембрана состоит из двух слоев липидов, соединенных протеинами. Повреждение тонкого липидного слоя неизбежно приводит к разрушению специфических рецепторов и изменению проницаемости мембраны. Эти процессы усиливаются фосфолипазным гидролизом, в результате которого образуется значительное количество высших жирных кислот из разрушенных мембран нервных клеток. Накопление высших жирных кислот усиливает токсический эффект повреждения, нарушает функции митохондрий (энергетических станций клетки), что приводит к энергетическому дефициту. Энергетический дефицит нейронов возникает в результате недостаточного поступления кислорода и нарушения функции митохондрий, в которых синтезируется основной носитель энергии (аденозинтрифосфорная кислота – АТФ). Изменение проницаемости мембраны сопровождается входом в клетку ионов натрия и кальция. Чрезмерное содержание кальция внутри нейрона приводит к его дегенерации, дистрофии, гибели.
Особенности кровоснабжения головного мозга
Потребность головного мозга в кровоснабжении примерно в 10 раз выше, чем потребность мышц или внутренних органов. Снижение магистрального кровотока по сонным артериям или нарушение микроциркуляции немедленно сказываются на обменных процессах в тканях нервной системы. Факт недостаточности поступления крови к тканям принято характеризовать общим термином «ишемия».
Головной мозг получает кровь через четыре крупные артерии: две внутренние сонные, которые внутри мозга разветвляются, образуя крупные средние мозговые, и две позвоночные. В основании мозга все крупные артерии, посредством соединительных артерий, образуют Виллизиев круг, который обеспечивает бесперебойное кровоснабжение любых участков нервной ткани, несмотря на выключение одной из крупных артерий.
Обеспечивает, но не гарантирует. В некоторых клинических ситуациях (тромбоз, кровопотеря, разрыв стенки артерии) внезапные изменения приводят к повреждениям мозга.
Существуют механизмы, поддерживающие стабильность мозгового кровообращения в широком диапазоне изменений артериального давления, – ауторегуляция. Объем мозгового кровотока остается стабильным при максимальном артериальном давлении в диапазоне 70-160 мм рт. ст. Артериальное давление ниже 50–60 мм рт. ст. является критической величиной, ниже которой головной мозг страдает от ишемии. Однако и повышение систолического кровяного давления за пределы 160 мм рт. ст. приводит к спазму внутримозговых артерий и нарушению мозгового кровообращения. Именно поэтому сосудистый фактор считается наиболее значимым в механизмах повреждения нервной системы. Сосудистые причины, способные вызвать нарушения обменных процессов, могут быть связаны с атеросклерозом, гипертонической болезнью, заболеваниями крови и другими весьма распространенными в клинической практике обстоятельствами.