Читаем Лейбниц. Анализ бесконечно малых полностью

Гравюра Теобальда Фрайхера фон Ёра(1807- 1885), на которой изображен Лейбниц во время открытия Берлинской академии.

Гравюра, на которой изображено уничтожение Архимедом римских кораблей с помощью солнечных лучей.

Портрет Лейбница около 1700 года, работа Христофа Бернхарда Франке.


"Абсолютное доказательство не слишком интересно после того, как мы увидели, что может быть найдено идеальное доказательство. Признаю, что лучше бы оно было представлено в четком, искусном и элегантном виде, как во всех работах Архимеда. Но первое и самое главное — метод открытия сам по себе".


Но когда открытия излагались в эмпирической форме, без древнегреческой строгости, некоторые результаты не принимались другими учеными или вступали в противоречие с их данными. Еще одним важным аспектом было то, что проблемы нельзя ставить независимо друг от друга. Декарт утверждал, что схожие задачи должны решаться общим методом.


ДЕКАРТОВЫ КООРДИНАТЫ

Основная идея аналитической геометрии основывается на декартовых координатах.

Любая точка на плоскости обозначается двумя числами, которые отражают ее положение.

Декартовы оси состоят из двух перпендикулярных прямых, пересекающихся в одной точке — начале координат. Если нанести деления на прямые, каждой точке будут соответствовать два числовых значения, отмеряемых на обеих осях. Первое отмечается на горизонтальной оси, называемой осью абсцисс, а второе — на вертикальной оси, называемой осью ординат. Точка записывается как Р (х, у), где х — абсцисса, а у — ордината.

РИС. 1


Две прямые при пересечении делят плоскость на четыре области, которые получают название квадрантов и нумеруются от I до IV, начиная с квадранта, в котором обе координаты положительные, и следуя против часовой стрелки (рисунок 1). Однако изначально понятия осей не существовало. Ферма определял координаты следующим образом: положение точки Р задано двумя длинами — одной, отмеряемой по горизонтали от точки О до точки I, и другой, отмеряемой наклонно от I до Р (рисунок 2). Эти измерения — наши сегодняшние х и у. Как можно увидеть, на рисунке не определены оси и нет отрицательных координат.

РИС. 2



АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Значительный скачок для перехода от геометрии к алгебре произошел с созданием аналитической геометрии, которая позволяет заменять кривые уравнениями, чтобы работать напрямую с алгебраическим решением. Кривая с точки зрения аналитической геометрии — это множество точек, которое удовлетворяет одному условию и связано с алгебраическим уравнением.

Как в то время нередко случалось, аналитическая геометрия была открыта независимо двумя учеными, результаты которых не были полностью одинаковыми. Создателями ее были французы Пьер Ферма (1601-1665) и Рене Декарт (1596— 1650).

Ферма некоторые даже называли принцем любителей, поскольку на самом деле один из создателей теории чисел был судейским чиновником и занимался математикой в свободное время. Больше всего он известен благодаря знаменитой Великой теореме Ферма, которую смогли доказать только три века спустя. Также он был одним из создателей теории вероятностей. При жизни Ферма не опубликовал ни одного исследования, поэтому его труды стали известны благодаря письмам и бумагам, которыми он обменивался с друзьями и знакомыми.

Декарт, философ, физик и математик, занимался геометрией, опираясь, как и Ферма, на классиков. В 1637 году он опубликовал свою великую работу "Рассуждение о методе", где излагал свою философию и куда включил три приложения: "Диоптрика", "Метеоры" и "Геометрия".

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература