Читаем Лейбниц. Анализ бесконечно малых полностью

Были и другие математики, которые настолько близко подошли к определению анализа бесконечно малых, что как бы расстелили ковровую дорожку, по которой Ньютон и Лейбниц вошли в историю. Английский математик Джон Уоллис, королевский криптограф, представил в 1656 году свою главную работу "Арифметика бесконечного", в которой на основе работ Декарта и Кавальери изложил свой метод работы с бесконечно малыми. Уоллис вычислил квадратуру гипербол, то есть кривых, уравнения которых имеют вид:

1/xr

где r не равно 1.

В своем методе он пользовался скорее алгебраической базой, чем геометрической, как частично делали Ферма и Роберваль. Чтобы найти площадь, замыкаемую кривой у = х3, Уоллис использовал отношение между треугольниками и квадратами с одинаковой длиной основания. В них он провел неделимые линии, которые их образовывают, и сложил кубы их длин, поскольку мы работаем с х3. Если есть только две линии, в треугольнике мы получаем длины со значениями 0 и 1, в то время как в квадрате обе линии равны 1. Получается следующее отношение:

(03+13)/(13+13) = 1/2 = 1/4+1/4.

Если взять три линии, то длины линий, находящихся в треугольнике, будут равны 0, 1 и 2, в то время как в квадрате во всех трех случаях они будут равны 2. Если взять четыре линии (см. рисунок), то в треугольнике измерения равны 0, 1, 2 и 3, в то время как в квадрате все линии имеют размер 3:

(03+13+23)/(23+23+23) = 9/24 = 6/24+3/24 = 1/4+1/8,

(03+13+23+33)/(33+33+33+33) = 36/108 = 27/108+9/108 = 1/4+1/12.

Как можно заметить, по мере увеличения числа линий результатом всегда является дробь 1/4 плюс каждый раз все меньшая дробь. При увеличении количества линий наступит момент, когда вторая дробь станет меньше любого заметного числа и, следовательно, практически равной нулю, так что площадь под кривой равна 1/4.

Метод Уоллиса для нахождения отношения между треугольником и квадратом в случае, когда имеется четыре линии.


Одним из самых серьезных ученых был англичанин Исаак Барроу (1630-1677), теолог и математик, преподаватель Ньютона на Лукасовской кафедре математики в Кембридже. На его трудах основывались Ньютон и Лейбниц.

Его главным вкладом в математику являются "Лекции по оптике и геометрии" (1669), в которых Барроу изложил свой анализ. Если бы не его чрезмерная увлеченность геометрическими методами, основателем математического анализа мог бы стать он сам. Обзор этой работы дает нам представление об элементах анализа: построение касательных, дифференцирование произведения и частного, дифференцирование степени, спрямление кривых, замена переменной в определенном интеграле и дифференцирование неявных функций. Барроу также осознавал, что вычисление квадратуры и дифференцирование были взаимно обратными операциями, о чем уже говорил шотландский ученый Джеймс Грегори, но тогда никто на это высказывание не обратил внимания. Барроу изложил свои идеи в геометрическом виде и только для некоторых функций.


ПРОБЛЕМЫ АНАЛИЗА

Один из наиболее связанных с математикой аспектов — это движение. Вспомним, что многие математики считали кривую точкой в движении. В связи с движением выделялось два вопроса: найти скорость и ускорение объекта, когда известно расстояние, которое он проходит в зависимости от времени, и обратная задача — найти скорость и пройденное расстояние, когда известно ускорение. Однако на самом деле основная задача состояла в том, чтобы выяснить, какова мгновенная скорость. Если мы проехали 90 км за один час, мы знаем, что средняя скорость этой поездки была 90 км/ч, но очень вероятно, что за этот час мы иногда набирали большую скорость, а иногда меньшую. Аналогично, если мы знаем скорость в определенный момент и время движения, мы также не можем знать пройденного расстояния, поскольку эта скорость постоянно меняется. Чтобы перейти от средней скорости к мгновенной, мы должны совершить переход к пределу, который был неизвестен в XVII веке.

Второй основной задачей было нахождение касательной к кривой. Практическое применение ее решения встречается непосредственно в оптике. В задачах с линзами важно знать угол, который образует луч с линзой, поскольку он будет таким же, как и угол преломления. Угол измеряется между лучом и перпендикуляром к касательной в точке падения луча. Также при криволинейном движении мгновенная скорость направлена по касательной к траектории. Можно представить себе очень простой эксперимент, чтобы проверить это: если привязать груз к веревке и быстро раскрутить его, то когда мы отпустим веревку, груз не будет продолжать вращаться, а переместится в направлении касательной к окружности, описываемой им ровно в тот момент, когда мы отпустили веревку.

Для древнегреческих ученых касательной к кривой была прямая, у которой была единственная общая точка с кривой и которая вся находилась с одной стороны от нее. Но в XVII веке ее определяли в терминах движения и сил.


МЕХАНИЧЕСКИЕ КРИВЫЕ: ЦИКЛОИДА

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература