Читаем Лейбниц. Анализ бесконечно малых полностью

После публикации своей первой статьи, посвященной анализу, в 1684 году у Лейбница возникли проблемы с авторством. И хотя он настаивал на том, что его метод отличается и что он нашел его до того, как познакомился с какой-либо работой Ньютона, о чем свидетельствовали письма, написанные Ольденбургу, это не помогло. Дело обострилось, когда Никола Фатио де Дюилье, ученик Ньютона, обвинил Лейбница в плагиате.

Обвинения начали летать туда-сюда между континентом и островом, а математики вставали на сторону того или другого ученого. Полемика разгорелась так жарко, что Лейбниц потребовал создать комиссию Королевского общества, чтобы определить, кто был прав в этой дискуссии. Комиссия, которая была создана Ньютоном, бывшим в то время председателем научного общества, пришла к выводу, что первенство было за английским ученым.

Из-за этого спора английские и европейские интеллектуалы прервали отношения и перестали обмениваться информацией. Ученые с континента поддержали Лейбница, а английские — Ньютона, но так как английская версия анализа в большей степени основывалась на геометрических методах, чем европейская, это стало помехой для английской математики, которая в условиях изоляции отстала от континентальной.


РАСПРОСТРАНЕНИЕ АНАЛИЗА

Метод Лейбница был быстро принят математиками европейского континента. Самыми преданными его "апостолами" были братья Якоб и Иоганн Бернулли, первые из большой семьи известных математиков. Работа Лейбница была оригинальной и результативной, но несколько незаконченной: иногда ей было сложно следовать. К счастью, братья Бернулли упорядочили ее, привнеся множество примеров и новых деталей. Лейбниц признал большой вклад, сделанный Бернулли, и даже подчеркнул, что они стали первыми, кто применил новый метод к решению физических проблем.

Якоб Бернулли (1654-1705) являлся самоучкой и был хорошо знаком с трудами главных предтеч анализа: Декарта, Уоллиса и Барроу. Он работал преподавателем математики в Базельском университете. Найдя одну из первых работ Лейбница по данной теме, Якоб самостоятельно освоил дифференциальное и интегральное исчисление. Он объяснил суть нового метода своему брату Иоганну, и они оба начали работать над анализом Лейбница. В 1690 году в "Актах ученых" Якоб опубликовал статью, в которой говорил о собственных методах анализа и решил задачу, предложенную Лейбницем за три года до этого: "Найти кривую, расположенную в вертикальной плоскости, по которой материальная точка опускается на одну и ту же длину за одно и то же время".

У Иоганна Бернулли (1667-1748) по прозвищу Задира было больше таланта и изобретательности, чем у брата. Он был великим геометром, хотя и не очень скромным (на его могильной плите выгравирована надпись: "Здесь лежит Архимед своего времени"). Он был убежденным защитником Лейбница и сторонником его приоритета в создании математического анализа. Иоганн поссорился с несколькими математиками, особенно со своим братом Якобом и сыном Даниилом. Он был преподавателем Эйлера и объяснял анализ маркизу Лопиталю, знатоку математики.

Действительно, Гийом Франсуа Антуан, маркиз де Лопиталь (1661-1704), нанял Иоганна для того, чтобы тот объяснил ему детали анализа бесконечно малых. На основе полученной на этих уроках информации он опубликовал первый в истории учебник математического анализа: "Анализ бесконечно малых для исследования кривых линий" (1696). Лопиталь издал его под своим именем, хотя большинство результатов, представленных в этой книге, принадлежали самому Бернулли.

Оба брата решили множество задач с помощью нового метода: спрямление кривых, вычисление кривизны, эвольвенты, эволюты и точки перегиба. Якоб уделил особое внимание логарифмической спирали и так восхищался ей, что в итоге распорядился изобразить ее на своей надгробной доске.

Одной из форм, благодаря которой больше всего распространялся анализ, была постановка задач. Предложить задачу, чтобы остальные математики ее решали, — в то время такой метод был очень популярен.

В статье 1690 года Якоб решил задачу, предложенную Лейбницем, но также поставил другую: найти форму, которую примет идеально гибкая и однородная кривая под действием только веса, если она закреплена с двух концов. Решением оказалась кривая, известная как цепная линия. Ответ на задачу, помимо Гюйгенса и Лейбница, был найден братом Якоба, Иоганном. Сам Лейбниц позже, в 1692 году, опубликовал статью в "Журналь дэ саван", где снова представил решение и объяснил, как использовать цепную линию в навигации.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература