А как обстоят дела с фотосистемой II? Бактерии, использующие ее, выполняют с помощью света другой трюк. Эта форма фотосинтеза не осуществляет синтез органических веществ из углекислого газа. Она преобразует энергию света в химическую энергию, то есть, по сути, в электричество, которое можно использовать на различные энергетические нужды клетки. Механизм очень простой. Когда на молекулу хлорофилла падает фотон, один электрон забрасывается на более высокий энергетический уровень, где его перехватывает соседняя молекула другого вещества. После этого электрон быстро передается из рук в руки вниз по электрон-транспортной цепи, на каждом этапе выделяя немного энергии, пока наконец не возвращается на низкий энергетический уровень. Часть энергии, выделяющейся в ходе этих реакций, улавливается и используется для синтеза АТФ. Измученный электрон возвращается в ту же молекулу хлорофилла, с которой он начал путь, и завершает цикл. То есть свет забрасывает электрон на высокий энергетический уровень, после чего этот электрон, постепенно спускаясь обратно на уровень “покоя”, выделяет энергию, улавливаемую в виде АТФ, то есть в форме, в которой клетка может ее использовать. Так что перед нами просто электрическая цепь, работающая за счет энергии света.
Как могла возникнуть такая цепь? Ответ все тот же: путем совмещения и соединения. Электрон-транспортная цепь здесь более или менее такая же, как та, которая используется для дыхания и которая, как мы убедились в главе 1, должна была возникнуть еще в гидротермальных источниках. Она была просто позаимствована для другой функции. Как мы отмечали, в ходе дыхания электроны отнимаются у молекул пищи и передаются в итоге кислороду, в результате чего образуется вода. Выделяющаяся при этом энергия используется для синтеза АТФ. В процессе обсуждаемой формы фотосинтеза происходит в точности то же самое: электроны с высокого энергетического уровня передаются по цепочке, но не кислороду, а “алчной” (окисляющей) форме хлорофилла. Чем сильнее этот хлорофилл может “оттягивать” электроны (то есть чем ближе он к кислороду по этому химическому свойству), тем эффективнее будет работать такая цепь, засасывая электроны и извлекая из них энергию. Огромное достоинство такой цепи состоит в том, что для ее работы не требуется топливо в виде молекул пищи — по крайней мере, для получения энергии (оно требуется только для синтеза новых органических молекул).
Можно сделать следующий вывод: две более простые формы фотосинтеза по своей природе мозаичны. В обеих формах новый преобразователь энергии (хлорофилл) был встроен в уже существующий молекулярный аппарат. В одном случае этот аппарат преобразует углекислый газ в сахара, в другом - производит АТФ. Что касается хлорофилла, то близкие к нему пигменты класса порфиринов в древнейшие времена, по-видимому, возникали на Земле самопроизвольно, а об остальном позаботился естественный отбор. В каждом из рассмотренных случаев небольшие изменения в структуре хлорофилла приводят к изменениям длины волн поглощаемого света, а следовательно, и химических свойств молекул. Все эти изменения влияют на КПД процессов, которые происходили и спонтанно, хотя в этом случае они сопровождались пустой тратой ресурсов. Закономерным итогом отбора на их производительность должно было стать превращение хлорофилла в “алчного скрягу” для синтеза АТФ у одних, вольных бактерий — и в “навязчивого торговца” у других, живущих поблизости от запасов сероводорода или железа и использующих фотосинтез для получения сахаров. Но у нас остается еще один, более принципиальный вопрос: как все это сошлось воедино в виде Z-схемы цианобактерий, позволившей расщеплять идеальное топливо — воду?
Коротко на это можно ответить так: мы точно не знаем. Есть способы, которые, казалось бы, могут дать окончательный ответ, но пока это не удалось. Например, можно методично сравнивать гены обеих фотосистем у разных бактерий и построить на основе этих генов генеалогическое дерево, отражающее историю наследования фотосистем. Но подобные деревья губит одна особенность жизни бактерий — половой процесс. Половой процесс бактерий не похож на наш, в результате которого гены передаются от родителей детям, позволяя нам рисовать красивые, упорядоченные генеалогические деревья. Бактерии вовсю разбрасываются своими генами, нисколько не заботясь о мнении генетиков. В итоге получается скорее сеть, чем дерево, и гены одних бактерий оказываются у других, совершенно им не родственных. А это значит, что у нас нет надежных генетических данных, которые позволили бы разобраться в том, как две фотосистемы объединились Z-схему.