Читаем Лестница жизни. Десять величайших изобретений эволюции полностью

Но это не значит, что мы не можем дать на поставленный вопрос вообще никакого ответа. Огромная ценность научных гипотез состоит в том, что, предлагая путь в неизвестное, они дарят нам возможность взглянуть на ту или иную проблему под новым углом и предложить эксперименты, которые подтвердили бы или опровергли соответствующие постулаты. Вот одна из лучших имеющихся на сегодня гипотез — прекрасная идея, которую выдвинул изобретательный Джон Аллен, профессор биохимии из Лондонского университета королевы Марии. Аллен — единственный человек, удостоившийся сомнительной чести попасть на страницы трех последовательно написанных мною книг, в каждой из которых обсуждается по одной революционной идее этого ученого. Как и все лучшие научные идеи, эта его гипотеза отличается простотой, прорывающейся сквозь наслоения к самой сути. Она вполне может оказаться ошибочной, как и некоторые другие прекрасные научные идеи. Но даже если эта идея ошибочна, она показывает, как в принципе мог сложиться статус-кво, и подсказывает, какие эксперименты можно провести для ее проверки, тем самым направляя исследователей по правильному пути. Она не только помогает нам разобраться в проблеме, но и побуждает к действиям.

Многие бактерии, отмечает Аллен, в ответ на изменения среды “включают” и “выключают” определенные гены. Этот факт общеизвестен. Одна из важнейших разновидностей таких включений и выключений связана с присутствием или отсутствием сырья. В целом бактерии не склонны растрачивать энергию, синтезируя новые белки для переработки того или иного сырья, если такого сырья нет в наличии. Они просто останавливают соответствующий “цех” до особого распоряжения. Исходя из этого, Аллен представил себе среду с колеблющимися условиями, например строматолиты на морском мелководье в окрестностях гидротермального источника, выделяющего сероводород. Условия на этом строматолите должны были меняться в зависимости от приливов и отливов, течений, времени года, гидротермальной активности и других факторов. Главная особенность гипотетических бактерий, обитавших в такой среде, могла состоять в том, что у них имелись обе фотосистемы, как у современных цианобактерий, но, в отличие от цианобактерий, те бактерии в каждый момент времени пользовалисьтолько одной из двух систем. Если в их распоряжении оказывался сероводород, они могли переключаться на фотосистему I, чтобы получать органические вещества из углекислого газа. Они могли использовать эти вещества для роста, размножения и других функций. А когда условия менялись и строматолиты оставались без сырья, бактерии могли переключаться на фотосистему II. Тогда они уже не производили новые органические вещества (соответственно, прекращая расти и размножаться), но могли в ожидании лучших времен поддерживать в своих клетках жизнь, используя солнечный свет непосредственно для синтеза АТФ. Как мы уже убедились, каждая из двух фотосистем имеет свои преимущества, и обе они совершенствовались в ходе эволюции, пройдя целый ряд несложных поэтапных изменений.

Но что случится, если гидротермальный источник иссякнет или перемена течений приведет к долговременным изменениям в этой среде? Теперь бактериям придется полагаться в основном на электрон-транспортную цепь фотосистемы II. Но здесь может возникнуть проблема: поступающие из окружающей среды электроны могут вызвать засорение цепи, даже если процесс их поступления будет медленным из-за малого числа электронов. Электрон-транспортная цепь отчасти напоминает детскую игру “передай посылку”. В любой момент времени у каждого носителя либо есть электрон, либо нет, точно так же, как каждый участник игры, когда замолкает музыка, либо держит в руках “посылку”, либо не держит. А теперь представьте, что ведущий решил все испортить и, взяв целую груду “посылок”, стал давать их детям по одной после каждой передачи “посылки” по кругу. Теперь у каждого ребенка окажется “посылка”, ни один из них не сможет передать ее другому и игра, ко всеобщему замешательству, остановится.

Нечто похожее могло происходить и с фотосистемой II. Эту проблему неизбежно должны были вызывать сами свойства солнечного света, особенно в те времена, когда озонового слоя еще не было и на поверхность моря падало гораздо больше ультрафиолетовых лучей. Ультрафиолетовые лучи не только расщепляют молекулы воды, но и могут “откалывать” электроны от молекул металлов и других неорганических веществ, растворенных в морской воде, особенно от марганца и железа. А это должно было приводить именно к таким ситуациям, как та, из-за которой зашла в тупик наша игра “передай посылку”: в электрон-транс- портную цепь понемногу поступали “лишние” электроны.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература