Читаем Левое полушарие–правильные решения. Мыслить и действовать: как интуиция поддерживает логику полностью

Модели могут хорошо работать даже в случаях, казалось бы, субъективных. Как вы думаете, в каком случае вернее прогноз качества вина: когда за дело берется знаток с хорошим вкусом и многолетним опытом или когда вводится статистическая модель, не различающая ни вкуса, ни запаха? Большинство из нас скажет, что знаток. Мы представляем себе элегантного человека; подняв бокал темно-красного вина, он медленно его поворачивают, вдыхая букет и смакуя тонкие оттенки – здесь ежевика, там корица. Мы считаем, что личный опыт, накопленный за много лет на виноградниках Бургундии и Напы, позволит точно оценить урожай. Факты говорят о другом. Использовав информацию о Бордо, главной винодельческой области Франции, принстонский экономист Орли Эшенфельтер разработал модель, позволявшую предсказать качества вина из определенного урожая на основе всего трех переменных: количество осадков зимой, во время сбора урожая и средняя температура во время вегетационного периода.[245] К удивлению многих, модель предоставляет значительно более точные оценки.[246]

Последние два примера приведены профессором права Йельского университета Яном Айресом в книге «Super Crunchers: Why Thinking-by-Numbers Is the New Way to Be Smart» («Суперсолдаты: Думай числами – будешь умным»). Айрес объяснил, что преимущество моделей состоит в отсутствии распространенных предубеждений. Неудивительно, что он упомянул самоуверенность, отметив, что люди «чертовски самоуверенны в своих прогнозах и медленно их меняют перед лицом новых доказательств»[247] (в качестве доказательства Айрес привел исследование, не раз упомянутое мною, когда люди должны указать диапазон 90-процентной уверенности при ответе на вопросы на общую эрудицию. Они постоянно зауживают диапазон. Айрес прав: мы склонны к сверхточности, но знаем, что сверхточность не свидетельствует о переоценке или смещении). У моделей предубеждений нет: в них объективно взвешиваются все данные, так что не удивительно, что результат лучше.

Значит, модели решений – действительно «новый способ стать умным»? Безусловно. По крайней мере, в некоторых типах решений.

Но давайте вернемся к нашим примерам. В каждом случае мы ставили цель сделать прогноз того, на что не могли повлиять. С помощью модели можно оценить, будет ли погашен кредит, но нельзя изменить вероятность того, что данный кредит не будет погашен в срок. Она не поможет повысить платежеспособность заемщика или убедиться, что он не растратит деньги за неделю до платежа. С помощью модели можно предсказать количество осадков и солнечных дней на данной ферме в центральной Айове, но нельзя изменить погоду. Можно оценить, сколько времени продлится брак знаменитости, но нельзя сделать его ни короче, ни длиннее. Можно оценить качество вина определенного урожая, но не сделать его лучше. Нельзя уменьшить кислоту, улучшить баланс или добавить оттенок ванили или нотку черной смородины.

В ситуациях, когда нам требуется точная оценка того, на что мы не можем повлиять, модели могут быть чрезвычайно мощным средством. Но когда мы можем влиять на результаты, картина меняется. Давайте вернемся к примеру с велосипедистами из главы 2: доктор Кевин Томпсон использовал обманный аватар, чтобы побудить испытуемых ехать быстрее. Если Томпсон проведет один и тот же эксперимент много раз и накопит большой набор данных, то он, безусловно, сможет разработать модель, предсказывающую соотношение между величиной «тайного дополнения обратной связи» и производительностью велосипедиста. Он мог бы, например, показать, что большинство спортсменов может держаться вровень с аватаром, когда он ускоряется на 2 %, что некоторые не отстанут и при ускорении на 3 %, меньшее число не отстанет при ускорении на 4 % и почти все отстанут при ускорении более чем на 5 %. Эффективный подход для кабинетного ученого, вносящего результаты в таблицу или сравнивающего их с контрольными. Он использует данные, чтобы прогнозировать исход, на который не влияет. Но у велосипедиста совсем другая реальность. Для человека, крутящего педали, жизненно важно позитивное мышление. Предполагая, что вы можете достичь высокой производительности, даже если ваше убеждение выходит за рамки того, что делалось раньше, вы действительно можете ее достигнуть.

Перейти на страницу:

Похожие книги