Извлечение корня есть смысловая энергия разных становлений, переходящих одно в другое в порядке субстанциального различения.
Логарифмирование (поскольку о нем может идти речь в арифметике) есть смысловая энергия разных становлений, переходящих одно в другое в порядке самотождественного различия и образующих ц результате подвижной покой.
Можно говорить и иначе.
Возведение в степень есть смысловая энергия числа, функционирующего в аспекте отождествления его внутренно–внешних ннобытийных воспроизведений.
Извлечение корня есть смысловая энергия числа, функционирующего в аспекте различия его внутренно–внешних ннобытийных воспроизведений.
Логарифмирование есть смысловая энергия числа, функционирующего в аспекте подвижного покоя его внутренно–внешних ннобытийных воспроизведений.
5. Заметим, что категория подвижного покоя, выступающая в логарифмировании, вполне налична, собственно говоря, также и в отношет нии первых двух пар арифметических операций. Однако невозможно придумать новой операции подвижного покоя в отношении сложения и вычитания, потому что здесь эта операция вполне совпадает технически с основными действиями. Если бы мы захотели получить не только отождествление отдельных чисел в одной их сумме и не только различение какого–нибудь числа на фоне общей суммы чисел, но еще и найти закон движения этого отождествления и различения, то мы должны были бы просто сказать, что в качестве такого закона действует само же сложение или вычитание. Технически эти операции вполне совпадают, хотя логически они вполне различны. Найти закон составления суммы или разности—значит точно зафиксировать количество и характер слагаемых или уменьшаемого и вычитаемого. Это же относится и ко второй паре—умножению и делению. И только в отношении к третьей паре арифметических операций оказывается целесообразным выделить нахождение закона движения в особую операцию, и только тут для особой логической категории (подвижной покой) возникает и особый технический коррелят (логарифмирование)
[914].1. Диалектика простейших арифметических действий—очень тонкая вещь. Тут нагромождена масса логических категорий, которые с трудом поддаются анализу. Повторим еще раз вышеприведенную схематику, чтобы не оставалось никакой неясности.
a) Нужно прежде всего твердо держать в памяти то, что было сказано в § 115, п. 4 о перво–принципе арифметических действий, о категориальном принципе и о структурном принципе. Из них проще первый и третий. Первый появляется как синтез категорий натурального ряда и типологии. Третий воспроизводит лишь схематику общей теории числа. Более запутанный второй принцип, категориальный.
b) Тут сложная игра категорий. Пять обыкновенных внутри–эйдетических категорий пляшут тут далеко не сразу понятный балет. Чтобы не сбиваться с четкого диалектического пути, скажем прежде всего, что все эти пять категорий, конструирующие вообще всякий эйдос, обязательно участвуют решительно в каждом арифметическом действии. И следовательно, вопрос может ставиться только о том, как они тут участвуют, в каком порядке и в каком взаимоподчинении. Если говорить об основной, о главной, о центральной и превалирующей роли, то необходимо сказать, что первая пара стоит под самотождественным различием, вторая—под подвижным покоем и третья—под бытием (или «субстанцией»). Это видно из того, что в первой паре мы имеем дело с равноправными элементами, которые так и остаются в своем равноправии, входя без всякого изменения в сумму (или разность). Тут, стало быть, можно только их различать и потом отождествлять в одну непрерывную линию становления. Во второй паре множимое, несомненно, движется, раз оно воспроизводится; и в третьей паре, несомненно, речь идет о воспроизведении, но уже о всецелом, о воспроизведении в каждом отдельном моменте воспроизводимого, т. е. о субстанциальном росте.
Итак, превалируют и, так сказать, «задают тон» самой категории каждого действия именно эти категории. Однако тут же участвуют и все прочие категории, но уже подчиненно. В § 117, п. 5 мы указали, что подвижной покой есть и в первой паре, но он не дает тут особенно значительного результата, отдельно от того, что дает самотождественное различие. Так же не было особенного смысла вводить в §«115, п. 4 в определение второй пары категорию самотождественного различия, хотя внимательный читатель, несомненно, заметил, что прибавки в конце формулы умножения «в целях взаимовоспроизведения» и в конце формулы деления «в целях воспроизведения одного в пределах другого» содержат в себе если не прямо указание на эту категорию, то на известное ее частичное функционирование. Наконец, в третьей паре действий и в логарифмировании уже ясно выступает то, как при центральности одной из пяти категорий имеют важное значение и все другие.