Читаем Личность и Абсолют полностью

2. Но только ли это фиксация неподвижных этапов становления? Если бы мы тут имели только ряд чисел, никак между собою не связанных, можно ли было считать [это] результатом становления? Напр., пусть мы делили 10 на 2 и получали в частном 5. Это 5 есть результат деления, та граница, за которую мы дальше не идем и которая полагает предел для нашего действия деления. Получивши эту границу, мы теперь фиксируем и пройденные этапы становления, т. е. фиксируем прежде всего 10 и 2, а потом, может быть, и многие другие этапы, если процесс получения частного был достаточно сложный. Можно ли сказать, что 10, 2 и 5, взятые сами по себе, есть результат становления, т. е. ставшее? Хотя эти числа и есть нечто устойчивое и неподвижное, они все же не есть ставшее в результате того становления, которое называется операцией деления. Чтобы данный ряд чисел был ставшим именно в этом смысле, им необходимо фиксировать на себе след совершившегося через них становления. Эти числа уже не могут тут браться сами по себе, по своей изолированной количественной значимости. Они должны, будучи устойчивыми, нести на себе некий подвижный образ становления. Только тогда они и будут именно ставшим, когда в них окажется два плана: один—это они сами в своей неподвижности; другой—это проходящая через них стихия становления. Только это впервые и будет значить, что арифметическое действие осуществилось, т. е. перешло в свое ставшее и в свете своего результата представило все пройденные им (для достижения этого результата) числовые этапы.

3. Что же такое это ставшее как эффект распадения арифметического действия на несколько чисел, представленных в свете достигнутого этим действием результата? Это ставшее есть то, что называется в математике отношением и—далее—пропорцией.

Когда мы имеем отношение (а виднее это на пропорции), то у нас не просто ряд чисел, взятых в своей непосредственной количественной значимости. Это—числа, которые между собою как–то связаны. Как же они связаны? Они связаны именно тем результатом, который бы получился, если произвести над ними определенное действие. Эти устойчивые числа несут на себе что–то подвижное и неустойчивое, что само по себе вовсе не связано обязательно только с этими числами. Пусть мы имеем пропорцию:

Что это значит? Это значит, что мы имеем, во–первых, ряд неподвижных чисел (числители и знаменатели этих дробей), а, во–вторых, эти числа поставлены здесь между собою в такую зависимость, что они несут на себе образ одного и того же арифметического действия, т. е. одного и того же числового становления. Вот это–то и есть наше ставшее, потому что только здесь мы действительно рассматриваем отдельные этапы арифметического действия в свете самого результата этого действия. Однако для этого не надо прибегать к пропорции или к нескольким пропорциям. Уже если имеется просто отношение а:b, то и здесь мы должны находить ставшее в анализируемом смысле, т. е. освещение устойчивых этапов определенного арифметического действия в свете результата этого действия.

4. Развернутую форму анализируемой категории отношения мы можем найти в том, что математики называют рядом (хотя чистый ряд как таковой, т. е. без диалектически положенного единства взаимоотношения его членов, мыслится еще до ставшего в пределах уже одного только становления, как это мы имели, напр., в § 19). Конечно, в данном месте нашего исследования речь может идти только о числовых, а не функциональных рядах (имея в виду наше понимание арифметики и алгебры в § 84). И типов этих рядов, очевидно, столько же, сколько и типов арифметических действий. Существуют арифметические, геометрические, степенные, биномиальные и пр. ряды. Во всех этих рядах мы имеем комбинации устойчивых чисел, но по этим числам пробегает определенное «отношение», получаемое как результат того или другого арифметического действия. Здесь, следовательно, цельный процесс определенного арифметического действия распался на ряд устойчивых изолированных чисел, которые, однако, скомбинированы соответственно типу данного действия.

Таков первый этап новой арифметической категории, возникающей вслед за категорией действия.

§ 121. Делимость чисел. Комбинаторика· Детерминанты.

Перейти на страницу:

Похожие книги

Иисус Неизвестный
Иисус Неизвестный

Дмитрий Мережковский вошел в литературу как поэт и переводчик, пробовал себя как критик и драматург, огромную популярность снискали его трилогия «Христос и Антихрист», исследования «Лев Толстой и Достоевский» и «Гоголь и черт» (1906). Но всю жизнь он находился в поисках той окончательной формы, в которую можно было бы облечь собственные философские идеи. Мережковский был убежден, что Евангелие не было правильно прочитано и Иисус не был понят, что за Ветхим и Новым Заветом человечество ждет Третий Завет, Царство Духа. Он искал в мировой и русской истории, творчестве русских писателей подтверждение тому, что это новое Царство грядет, что будущее подает нынешнему свои знаки о будущем Конце и преображении. И если взглянуть на творческий путь писателя, видно, что он весь устремлен к книге «Иисус Неизвестный», должен был ею завершиться, стать той вершиной, к которой он шел долго и упорно.

Дмитрий Сергеевич Мережковский

Философия / Религия, религиозная литература / Религия / Эзотерика / Образование и наука