где р
1р 2, p nесть определенным образом расставленные числа 1,2,…, n, причем число этих «перестановок», как известно, будет равно 1·2·3·…·n=n! Если в качестве основного порядка «перестановки» взять прямую последовательность 1, 2, 3, …, η и под инверсией (беспорядком) понимать то явление, что большее число стоит в перестановке раньше меньшего, то мы получим в одних произведениях четное число инверсий во вторых значках, в других нечетное. Возьмем первые со знаком плюс и вторые со знаком минус. Тогда сумма всех этих произведений и образует детерминант л–го порядка. Обозначая через [р 1р 2, p n] число инверсий в перестановке р 1р 2, p nмы можем Определить указанный детерминант какЕсли имеется детерминант второго порядка:
a
11, a 12a
21, a 22то он равен a
11, a 12 — a 21, a 22Здесь число, равное детерминанту, состоит из алгебраической суммы двух произведений, из которых оба имеют первыми значками основную перестановку, т. е. (1, 2), а вторыми значками—две возможные тут перестановки из двух элементов—(1, 2) и (2, 1), причем второе произведение как содержащее инверсию во вторых значках (2, 1) взято с минусом. То же самое легко усматривается на детерминанте 3–го порядка, который, очевидно, будет равен следующей алгебраической сумме произведений:a
11a 22a 33+ a 12a 23a 31+ a 13a 21a 32 — a 11a 23a 32 — a 12a 21a 33 — a 13a 22a 31Таково обычное определение детерминанта.
b) Что же мы тут усматриваем с точки зрения категориальной структуры? Мы находим прежде всего, что некое число (которому равен детерминант) составлено здесь из некоей системы чисел, рассмотрено в свете этой системы, вычислено при ее помощи. Значит, уже по одному этому детерминант вполне правильно отнесен нами к категории ставшей сущности арифметического числа. Всматриваемся, что же это за система чисел и как она составлена. Оказывается, наше число представлено здесь как алгебраическая сумма некоторых произведений. Это значит, что наше число взято нами в своем количественном содержании; и то, что мы получаем в результате применения действующей тут системы чисел, есть непосредственное количество. Другими словами, здесь мы имеем структуру того же типа, какую имели при непосредственном вычислении арифметического ряда (напр. в арифметической прогрессии), только что отдельные слагаемые составлены здесь по более сложному закону, чем в обыкновенных арифметических рядах. Остается, следовательно, учесть закон составления этих слагаемых, и мы исчерпаем категориальную структуру детерминанта.
Что же это за закон? Возьмем ради простоты рассуждения детерминант 3–го порядка. В этом случае наши произведения будут состоять каждое из трех сомножителей, которые будут составляться так. Сделаем все перестановки из трех элементов. Их будет шесть:
1, 2, 3
2, 3, 1
3, 1,2
1, 3, 2
2, 1,3
3, 2, 1.
Примем за основную перестановку первую — 1, 2, 3. Сделаем так, чтобы эта основная перестановка имела значение во всех шести перестановках, чтобы все они были на нее нанизаны. Тогда и получаем закон составления этих слагаемых из произведений:
11,22,33
12, 23, 31
13, 21, 32
11,23,32
12, 21, 33
13, 22, 31.
Смысл этого распределения заключается в том, чтобы каждая из шести перестановок обязательно имела смысл основной перестановки 1, 2, 3, чтобы каждый элемент независимо от своего собственного значения имел бы также значение и своего положения в перестановке 1, 2, 3.
с) Нетрудно заметить, что количественно–смысловое значение нашего общего числа и участие в нем разной расставленности актов полагания, т. е. его «смысл» и его «бытие», построены по одному и тому же закону, по закону диалектической триады. Количество дано в виде суммы, следовательно, имеется в виду некоторая положенность чисел; и эти слагаемые суть некоторого рода произведения, следовательно, положенность перешла тут в свое инобытие, поскольку (§ 117) всякое произведение есть всегда некое воспроизведение одного в ином. Но если каждое слагаемое есть произведение, то все наше число есть сумма произведений. Это третий шаг в определении количественного смысла изучаемого числа. С другой стороны, переходя к изучению актов полагания, из которых составляется наше число, мы прежде всего видим, что тут признается за данный некоторый определенный порядок актов полагания (выбор этот вполне произволен), а затем тут же перебираются все возможные инобытийные виды этого порядка, с которыми, однако, основной порядок остается неразрывно связанным. Таким образом, три диалектических шага вполне различимы в структуре как количественного содержания изучаемого числа, так и актов его полагания.