Читаем Личность и Абсолют полностью

b) Всмотримся в первый способ конструирования числа из системы чисел. Мы, стало быть, берем число в его чисто количественной значимости и спрашиваем себя, как его можно составить из того или иного ряда чисел, расположенных по тому или иному закону. Простейшей и яснейшей проблемой арифметики, относящейся сюда, является, очевидно, проблема делимости чисел. Иметь точное представление о делимости числа—это и значит рассматривать данное число при помощи целого ряда определенным образом подобранных чисел. В частности, вопрос о том, делится ли данное число N на q без остатка, есть, напр., вопрос о том, можно ли составить арифметическую прогрессию, в которой первый член есть 0, последний =N, а разность =q. Но и без этого ясно, что вопрос о том, каковы делители данного [числа], как оно из них составляется и даже делимо ли вообще данное число на другое данное, в диалектическом смысле есть не что иное, как рассмотрение числа с точки зрения определенной системы других чисел, так или иначе связанных между собою. Вся нелегкая проблема делимости чисел развивается именно под этой модификацией ставшей сущности арифметического числа.

c) Обратимся к числу как системе полаганий. Хотя актов полагания в числе столько же, сколько в нем и количественных единиц, но логически это совершенно разные категории. И мы сейчас же замечаем, сколь несхожую структуру мы получим, если остановимся именно на актах полагания. Итак, берем те акты полагания, из которых состоит данное число, и пробуем представлять их как возникающие из определенной системы чисел. Акты полагания единиц в числе тем отличаются от его количественного смысла, что они существуют и могут рассматриваться в своей полной изолированности, в то время как количество, будучи смыслом числа, обязательно берется как целое, как некая неделимая единичность, вне которой оно рассыпается и теряет свой смысл, т. е. перестает быть смыслом числа. Каждый акт полагания имеет значение сам по себе и, даже все вместе взятые, они остаются (как таковые, вне своего смысла) полной дискретностью. Поэтому привлечение некоей новой системы чисел для характеристики актов полагания, составляющих данное число, нисколько не затронет его количественно–смысловой значимости, а только произведет изменение в них как именно в них. Но что же это значит—произвести изменение в актах полагания как актах полагания? Это значит производить из них тот или иной отбор и располагать их в том или ином порядке. Раз количественная сторона числа остается без внимания, то остается только так или иначе комбинировать входящие в него акты полагания, или единицы. Другими словами, здесь мы наталкиваемся на тот отдел математики, который обычно носит название комбинаторики, или учения о соединениях. Мы можем иметь в виду тот или иной выбор элементов, тот или иной порядок элементов, наконец, то или иное объединение выбора элементов с их порядком и получить три общеизвестных типа «соединений»-— «размещения», «перестановки» и «сочетания».

Возьмем хотя бы «перестановки». Пусть у нас имеется Ρ элементов, т. е. число Р. Отвлечемся от того, что это именно Р, а будем только оперировать с входящими в него элементами. И пусть нам скажут, что эти элементы, взятые в таком виде, должны быть составлены соответственно той или другой системе чисел. Какова бы эта система ни была, мы сможем произвести в них изменение именно в смысле того или иного их комбинирования, т. е. определенного отбора и порядка. Никакие иные характеристики нашего числа невозможны, раз мы с самого начала отбросили его чисто количественный смысл. Так с очевидностью вытекает, что комбинаторика есть рассмотрение чисел, взятых только в составляющих их актах полагания, с точки зрения той или иной системы других чисел.

3. По нерушимому закону диалектики количественный смысл и общечисловые акты полагания объединяются в нечто целое, и мы начинаем говорить о синтезе того и другого, об осмысленном акте полагания числа. Следовательно, число, рассматриваемое как появившееся из целой системы чисел (а значит, и операций), предстает и со всеми своими актами полагания, и со всей своей количественной значимостью. Мы получаем число, которое, во–первых, интересует нас уже само по себе, т. е. чисто количественно. А во–вторых, оно интересует нас как вычисленное на основании определенной системы чисел и, поскольку эта последняя, основана на комбинировании актов полагания, как вычисленное на основании комбинаторного принципа. Это соединение числа как непосредственного количества с его комбинаторной исчисленностью есть детерминант.

а) Посмотрим, как определяется детерминант. Берется n 2чисел, которые расставляются в виде следующей квадратной таблицы:

a 11, a 12… a 1n

a 21, a 22… a 2n

a n1, a n2… a nn

В этой таблице a ikпервым значком—i обозначается номер строки, вторым, к—номер столбца. Составляем всевозможные произведения из всех этих чисел так, чтобы в каждое произведение входило по одному числу из каждой строки и из каждого столбца. Очевидно, мы получим произведение вида

a 1p1a 2p2… a npn

Перейти на страницу:

Похожие книги

Иисус Неизвестный
Иисус Неизвестный

Дмитрий Мережковский вошел в литературу как поэт и переводчик, пробовал себя как критик и драматург, огромную популярность снискали его трилогия «Христос и Антихрист», исследования «Лев Толстой и Достоевский» и «Гоголь и черт» (1906). Но всю жизнь он находился в поисках той окончательной формы, в которую можно было бы облечь собственные философские идеи. Мережковский был убежден, что Евангелие не было правильно прочитано и Иисус не был понят, что за Ветхим и Новым Заветом человечество ждет Третий Завет, Царство Духа. Он искал в мировой и русской истории, творчестве русских писателей подтверждение тому, что это новое Царство грядет, что будущее подает нынешнему свои знаки о будущем Конце и преображении. И если взглянуть на творческий путь писателя, видно, что он весь устремлен к книге «Иисус Неизвестный», должен был ею завершиться, стать той вершиной, к которой он шел долго и упорно.

Дмитрий Сергеевич Мережковский

Философия / Религия, религиозная литература / Религия / Эзотерика / Образование и наука