Читаем Личность и Абсолют полностью

2. а) Но для изучения диалектической природы композиции будет очень полезно дедуцировать ее из фактического содержания предыдущих категорий арифметики. Если мы знаем, что выражение есть смысловым образом становящаяся, энергийная внутренно–внешняя структура, то это дает нам путь и для конкретно–математической дедукции. Наличное бытие выносит в выражении свое внутреннее наружу. Но где у нас в предыдущем это наличное бытие, или ставшее, и в чем его внутреннее? Последней и наиболее зрелой формой ставшего у нас была матрица. Она несла с собою и определенный внутренний смысл, который мог быть только количественным ее содержанием. Да и вообще числовой смысл в арифметике неотличим от количества. Внутреннее тут—количество. Но оно, конечно, не есть количество вообще, а определенным образом скомбинированное количество. Последним для матрицы является только детерминант. Следовательно, чтобы перейти в сферу выражения, матрица должна вовне выявить свой детерминантовый смысл. А так как выше мы уже пришли к выводу, что в выразительной сфере число оказывается не просто системой, но системой систем чисел, то вот в какой форме ставится теперь диалектическая задача: как проявляет себя детерминант, когда он из внутреннего содержания одной матрицы становится закономерностью для комбинации сразу нескольких матриц в нечто единое? Ответить на этот вопрос—это и значит диалектически дедуцировать новую, выразительную категорию числа в арифметике.

b) Вспомним структуру детерминанта. Это есть «алгебраическая» сумма всевозможных Произведений данного числа элементов. Значит, ряд матриц должны 1) соединиться в одну общую неделимую совокупность и 2) каждая матрица этой совокупности должна быть одним из тех всевозможных произведений, которые допускаются данными элементами. Но что значит «всевозможные произведения»? Мы знаем, что эта «всевозможность» есть не что иное, как совокупность всех перестановок сомножителей. Следовательно, матрицы, входящие в нашу общую совокупность матриц, должны отличаться одна от другой так, как отличаются одна от другой перестановки некоторого данного числа элементов. Но эти перестановки играли в детерминанте ту роль, что они определяли собою те или иные произведения. Здесь же мы имеем дело не с детерминантами, а с матрицами. Значит, перестановки важны тут не в качестве непосредственно значащих произведений, но в аспекте ставшего, т. е. именно как перестановки. Мы берем все перестановки из данного числа элементов—и получаем ряд числовых комплексов, не прибегая ни к суммированию, ни к умножению, ни вообще к какимнибудь непосредственно значащим количественным операциям. Также и всю совокупность матриц мы берем не как их сумму, но просто как некую комплексную совокупность, т. е. в чисто матричном же смысле.

Итак, получается совокупность матриц, каждая из которых есть одна из перестановок данного числа элементов, а все они суть все возможные перестановки этих элементов. Здесь внутренняя детерминантовая значимость матрицы вышла наружу и, определивши собою совокупность матриц как целое, стала в отношении к ним внешним принципом. Так рождается новая категория арифметики—группа, прообразом и неизменным образцом которой является эта только что выведенная совокупность всех перестановок данного числа элементов, взятая как целое и представимая матричио. Здесь внутреннее числовое содержание матрицы как наличного бытия стало внешним законом ее взаимоотношений с другими матрицами, законом композиции матриц, а внешняя объединенность и внеположность элементов матрицы превратилась во внутренне самообоснованный ряд комплексов, когда каждый из них не цепенеет на месте как всякая матрица, но энергийно тянет [ся] ко всякому другому комплексу общей совокупности и ко всем им эместе.

c) Таким образом, группа, эта наиболее общая выраженная форма арифметического числа, коренится еще в детерминанте, где она, однако, еще связана непосредственной значимостью единичного числа и не развита в совокупность свободно эманирующих элементов. Так оно и должно быть, потому что если наличное бытие есть осуществление смысла, а всякое осуществление предполагает объединение с инобытием, выражение же есть всегда прежде всего некое такое объединение, то нечто выразительное должно крыться уже в наличном бытии, в ставшем. Но конечно, поскольку здесь инобытие привлечено только лишь как голый принцип и не дана его реальная структура, постольку ставшее есть лишь самое начало выражения, его перво–принцип. Когда же инобытие получает свою свободу, т., е. когда из принципа превратится в становление, тогда и воплощенный на нем смысл станет выразительным по своей структуре. Вот почему детерминант—перво–принцип числовой выразительности, еще запрятанный в глубине ставшей сущности числа, а группа—выразительное арифметическое число, развернутое в своей структуре.

Перейти на страницу:

Похожие книги

Иисус Неизвестный
Иисус Неизвестный

Дмитрий Мережковский вошел в литературу как поэт и переводчик, пробовал себя как критик и драматург, огромную популярность снискали его трилогия «Христос и Антихрист», исследования «Лев Толстой и Достоевский» и «Гоголь и черт» (1906). Но всю жизнь он находился в поисках той окончательной формы, в которую можно было бы облечь собственные философские идеи. Мережковский был убежден, что Евангелие не было правильно прочитано и Иисус не был понят, что за Ветхим и Новым Заветом человечество ждет Третий Завет, Царство Духа. Он искал в мировой и русской истории, творчестве русских писателей подтверждение тому, что это новое Царство грядет, что будущее подает нынешнему свои знаки о будущем Конце и преображении. И если взглянуть на творческий путь писателя, видно, что он весь устремлен к книге «Иисус Неизвестный», должен был ею завершиться, стать той вершиной, к которой он шел долго и упорно.

Дмитрий Сергеевич Мережковский

Философия / Религия, религиозная литература / Религия / Эзотерика / Образование и наука