Читаем Личность и Абсолют полностью

c) Термин «группа» употребляется в разных смыслах. Тут, как и везде в математике, целый ряд неясностей термина. Прежде всего, неизвестно, относится ли теория групп к арифметике, к алгебре или к анализу (о геометрии согласимся, что тут только применение теории групп, хотя также можно было бы говорить, что функциональные группы суть только применение арифметических). Затем, если взять обычную формулировку группы, то она дается настолько широко, что сюда войдут и модули, и кольца, и поля, так что неизвестно, что же, собственно, считать группой в настоящем смысле. Можно условиться понимать под группой совокупность, образованную по закону умножения и деления. Наконец, при различии композиционных принципов все эти выразительно–числовые совокупности настолько близко совпадают по своей формальной структуре, что можно было бы избежать многих терминов, сводя их к общевыразительной терминологии и избегая столь любимых математиками схоластических нагромождений и усложнений.

Так как понятие группы—наиболее общее и широкое во всей этой выразительной сфере, то остановимся больше на нем.

§ 124. Теория групп.

1. Остановимся сначала на математическом определении понятия группы. Обычно это определение расчленяют на несколько тезисов, которые мы и рассмотрим с нашей обычной диалектической точки зрения.

a) Говорят: существует такая операция (ее называют композицией» или символическим умножением), при помощи которой два элемента (A i) и (A j) системы могут быть однозначно связаны. Другими словами* два любых элемента системы определяют собою однозначно некоторый свой совокупный результат, который условно можно назвать «произведением»; элементы тут «перемножаются».

В таком обычном широчайшем понимании композиции не говорится ни о каком определенном арифметическом действии. Не говорится тут даже и вообще об арифметических действиях. Под композицией тут можно понимать любое арифметически–алгебраическое действие и любое их объединение; можно понижать и любые геометрические процессы (вращение, сдвиг, перенос, отображение и пр.). Словом, понимайте тут что хотите, но только под одним условием: результат композиции должен быть обязательно определен входящими в нее элементами системы.

Ясно, что композиция в этом смысле есть самое общее, что характеризует группу, самый ее источник и первоисток. Она в этом смысле вполне играет роль перво–принципа в определении понятия группы.

b) Далее говорится: результатом данной композиции элементов группы является опять элемент той же группы. Диалектический смысл этого момента в определении группы очень важен.

Прежде всего, самый этот способ выражения хотя и вполне точный, но не вполне ясный, и не худо было бы подобные выражения заменить другими. Смысл этого утверждения заключается в следующем. Если мы имеем ряд элементов данной группы, то, очевидно, раз результат объединения каждых двух из них принадлежит к самой группе, сама группа состоит из этих объединений, точнее говоря, из всевозможных объединений («произведений»). Мы видим отсюда сразу, что упомянутый момент определения группы просто говорит о том, что группа есть система числовых систем, ряд рядов, и что эта система построена по определенному закону композиции. Если наш основной ряд есть А 1А 2, А 3, А 4, то, считая A 1за единицу (о чем еще будет речь ниже), мы получаем такую таблицу, носящую имя таблицы Кэли:

Тут наглядно видно, почему группа есть ряд рядов и каково значение в ней композиционного принципа.

Задаваясь вопросом о том, какова категориально–диалектическая сущность этого момента определения понятия группы, мы должны обратить внимание на то, что указанный выше перво–прннцип группы, т. е. самая композиция, выставлен здесь двояко. Во–первых, весь основной ряд «перемножен» на первый член ряда, и, во–вторых, весь основной ряд «перемножен» на все члены этого же ряда. Другими словами, наш перво–принцип, композиция, во–первых, как–то осуществлен, осуществлен вообще; это значит, что мы уже покинули тут стадию первопринципа группы и перешли к ее принципу, к ее «бытию». Во–вторых же, он осуществлен тут вполне определенным образом, а именно так, что мы при этом осуществлении не только пробегаем весь ряд, но осуществляем еще и самый ряд—соответственно пробегая опять все его члены подряд. Это значит, что композиционный перво–принцип перешел тут от своего бытия к своему становлению: мы не только осуществили композицию, но еще раз пустили это осуществление в новое осуществление. Таким образом, утверждение, что в группе результат композиции двух элементов принадлежит в качестве элемента к самой группе, освещает сразу и бытие, и становление в самом понятии группы.

Перейти на страницу:

Похожие книги

Иисус Неизвестный
Иисус Неизвестный

Дмитрий Мережковский вошел в литературу как поэт и переводчик, пробовал себя как критик и драматург, огромную популярность снискали его трилогия «Христос и Антихрист», исследования «Лев Толстой и Достоевский» и «Гоголь и черт» (1906). Но всю жизнь он находился в поисках той окончательной формы, в которую можно было бы облечь собственные философские идеи. Мережковский был убежден, что Евангелие не было правильно прочитано и Иисус не был понят, что за Ветхим и Новым Заветом человечество ждет Третий Завет, Царство Духа. Он искал в мировой и русской истории, творчестве русских писателей подтверждение тому, что это новое Царство грядет, что будущее подает нынешнему свои знаки о будущем Конце и преображении. И если взглянуть на творческий путь писателя, видно, что он весь устремлен к книге «Иисус Неизвестный», должен был ею завершиться, стать той вершиной, к которой он шел долго и упорно.

Дмитрий Сергеевич Мережковский

Философия / Религия, религиозная литература / Религия / Эзотерика / Образование и наука