Прибавление
. Количество как ближайший результат для-себя-бытия содержит в себе как идеальные моменты обе стороны своего процесса: отталкивание и притяжение; оно поэтому столь же непрерывно, сколь и дискретно. Каждый из этих двух моментов содержит в себе также и другой, и нет, следовательно, ни только непрерывной, ни только дискретной величины. Если, несмотря на это, говорят о непрерывной и дискретной величинах как о двух особенных, противостоящих друг другу видах величины, то это лишь результат нашей абстрагирующей рефлексии, которая, рассматривая определенные величины, в одном случае оставляет без внимания один, а в другом – другой из моментов, содержащихся в понятии количества в неразрывном единстве. Говорят, например, что пространство, занимаемое этой комнатой, есть непрерывная величина, а собравшиеся в нем сто человек образуют дискретную величину. Но пространство в одно и то же время и непрерывно и дискретно, и, согласно этому, мы говорим о пространственных точках, делим пространство (например, определенную длину) на столько-то и столько-то футов, дюймов и т. д.; это мы можем делать, только исходя из предпосылки, что пространство в себе дискретно.Но с другой стороны, состоящая из ста человек дискретная величина вместе с тем непрерывна, и непрерывность этой величины имеет основание в том, что обще им всем – в роде «человек», который проходит сквозь всех этих отдельных людей и связывает их друг с другом.
b. Определенное количество
§ 101
Количество, существенно положенное с содержащейся в нем определенностью, исключающей все прочие, есть определенное количество
(Quantum), ограниченное количество.Прибавление
. Определенное количество есть наличное бытие количества, а чистое количество соответствует, напротив, бытию, степень же (которая будет рассмотрена далее) – для-себя-бытию. Что же касается перехода от чистого количества к определенному количеству, то он имеет свое основание в том, что, в то время как в чистом количестве различие как различие между непрерывностью и дискретностью имеется лишь в себе, в определенном количестве это различие, напротив, положено, и положено так, что отныне количество вообще выступает как различенное или ограниченное. Но этим самым определенное количество распадается вместе с тем на неопределенное множество определенных величин. Каждая из этих определенных величин, как отличная от других, образует единство, точно так же, как и последнее, рассматриваемое для себя, есть многое. Но таким образом определенное количество определено как число.§ 102
Определенное количество находит свое развитие и полную определенность в числе
, которое подобно своему элементу – единице (das Eins) – содержит в себе как свои качественные моменты множество (die Anzahl) со стороны момента дискретности и единство (die Einheit) – со стороны момента непрерывности.Примечание
. В арифметике обычно формы исчисления даются как случайные способы действия над числами. Если есть необходимость и смысл в этих действиях, то этот смысл заключается в некоем принципе, а последний может лежать лишь в тех определениях, которые содержатся в самом понятии числа; мы здесь вкратце укажем этот принцип. Определения понятия числа суть определенное множество и единство (die Einheit), а само число есть единство (die Einheit) их обоих. Но единство в применении к эмпирическим числам есть только их равенство; таким образом, принцип арифметических действий должен состоять в том, что числа ставятся в отношение единства и определенного множества и устанавливается равенство этих определений.Так как сами единицы (die Eins) или сами числа безразличны друг к другу, то единство (die Einheit), в которое они приводятся, вообще имеет видимость внешнего сочетания. Исчислять – значит поэтому вообще считать
, и различие способов исчисления зависит только от качественного характера чисел, а принципом этого последнего являются определения единства и множества.Нумерация
есть первое действие, это – составление числа вообще, сочетание скольких угодно единиц. Но арифметическое действие есть исчисление и сочетание не просто единиц, а того, что уже представляет собой число.Числа суть непосредственно
и сначала совершенно неопределенно числа вообще; они поэтому вообще неравны; сочетание или исчисление таких чисел есть сложение.Ближайшее за этим определение состоит в том, что числа вообще равны
, они, следовательно, составляют одно единство, и имеется определенное множество таких чисел: исчисление таких чисел есть умножение, причем безразлично, как распределяются между обоими числами, между сомножителями, определенное множество и единство, какой из них принимается за определенное множество и какой – за единство.