во-первых, обозначить различными символами различные простые высказывания, входящие в рассуждение. В приведенном рассуждении встречаются следующие простые высказывания: “Иванов является участником этого преступления”, “Иванов знал потерпевшего”, “Иванов знал жену потерпевшего”. “Потерпевший знал Иванова”. Обозначим их соответственно символами
во-вторых, перевести на язык логики высказываний посылки и заключение. Переводом посылок являются формулы
в-третьих, формулы, являющиеся переводом посылок, последовательно соединить знаком конъюнкции. Получаем формулу:
в-четвертых, к полученной формуле присоединить справа знаком импликации формулу, являющуюся переводом заключения. Получаем формулу:
в-пятых, для полученной формулы построить таблицу истинности.
Если формула, являющаяся переводом рассуждения на язык символов, оказывается тождественно-истинной, то можно сделать вывод о том, что рассуждение правильное, если тождественно-ложной, то рассуждение неправильное. Может оказаться, что формула является выполнимой, но не тождественно-истинной. В том случае нет оснований считать рассуждение правильным. Необходимо продолжить анализ рассуждения, но уже средствами более богатого раздела логики — средствами
Вернемся к рассматриваемому рассуждению. Построим таблицу истинности для формулы, являющейся переводом этого рассуждения на язык символов:
Формула является выполнимой, но не общезначимой. Следовательно, нет оснований считать рассматриваемое рассуждение правильным.
Если формула содержит много переменных, то в некоторых случаях можно не строить таблицу, а путем особых “
Рассмотрим проанализированную выше формулу. Предположим, что при некотором наборе значений переменных она принимает значение “
Это возможно, если значение консеквента — “
Поскольку переменной
Подформула
Поскольку подформула
Тогда
Формула принимает значения “
Очевидно, что при значении “
Рассмотрим формулу:
Чтобы доказать, что формула является общезначимой, будем рассуждать от противного. Предположим, что она не общезначима, т.е. при некотором наборе значений переменных принимает значение “
Приходим к противоречию, так как в этом случае, чтобы антецедент импликации оставался истинным, первому вхождению переменной
Упражнение 7
Являются ли правильными следующие рассуждения?
1. Если философ — дуалист, то он не материалист. Если он не материалист, то он диалектик или метафизик. Он не метафизик. Следовательно, он диалектик или дуалист.
2. Если это преступление совершил Иванов, то он знает, где находятся похищенные деньги. Иванов не знает, где находятся похищенные деньги, но знает, где находятся похищенные вещи. Иванова видели на месте преступления примерно в то время, когда преступление было совершено. Следовательно, Иванов не совершал этого преступления.