Читаем Лысенко был прав! полностью

Кроме того, имеются вещества, нарушающие точное копирование последовательностей нуклеотидов, а также нарушающие точное воспроизведение информации при синтезе белков. Например, большинство антибиотиков представляют собой малые молекулы, которые проникают внутрь бактериальной клетки и закупоривают дырку между двумя субъединицами рибосомы прокариотов. Синтез белка при этом блокируется. Организм может сталкиваться с такими веществами и, естественно, частота ошибок резко увеличивается.

Если в какой-нибудь стадии сплайсинга произойдет ошибка, например, при вырезании интронов будет вырезан один нуклеотид из экзона ― это приведет к тому, что ген свою функцию не выполнит и "наказанием" за такую неточность будет или смерть, или тяжелое нарушение жизнеспособности, что в ряду поколений кончится тем же летальным исходом.

Итак, ошибки и огромнейшая вариабельность переноса наследственной информации заложена уже в самом генетическом коде. Ошибки компенсируются на основе дублирования функций и на основе введения специальных проверок, аналогических тем, которые клетка проходит во время митоза. Но главным являются специальные белковые машины, которые чинят повреждения. Половые клетки защищены от мутаций, так как после прохождения через тесты эмбриогенеза они не делятся до самого момента, когда начинается созревание какой-нибудь из них. Кроме того, половые клетки практически не используют гены для целей синтеза белков, то есть для осуществления своих жизненных потребностей, которые минимальны. Соматические клетки делятся или, по крайней мере, используют гены для выполнения своих функций. Поскольку в этом случае участки ДНК деспирализованы, то они имеют гораздо больше шансов быть поврежденными либо из-за ошибок копирования, либо из-за воздействия факторов внешней среды.

6.11. КАК КЛЕТКИ ЧИНЯТ ДНК И УДАЛЯЮТ ОШИБКИ КОПИРОВАНИЯ?

Накопление слишком много ошибок несовместимо со стабильностью генотипа. Стабильность структуры гена, а точнее генома, есть результат не его химической стабильности и сто процентной воспроизводимости при копировании, а есть следствие прекрасно организованного процесса проверки и контроля повреждений и их немедленной починки (182). Любая биологическая система делает достаточно много ошибок. Следовательно, нужны белковые системы, исправляющие ошибки. Поэтому природа создала механизм по исправлению ошибок копирования и других. Имеется система мониторинга (отслеживания), проверки полученных копий и при необходимости их починки. Клетки имеют специальные механизмы для починки повреждений ДНК.

Для того чтобы процесс не давал ошибок, требуются следующие механизмы: 1) нужно найти правильный нуклеотид, подходящий для комплементарного склеивания; 2) необходимо проверить, насколько только что добавленный нуклеотид соответствует правилу комплементарности и немедленно его удалить, если это не так, если он не прошел тест комплементарности; 3) необходима починка ошибок (отсутствие комплементарности), если они все же случились, несмотря на существование двух первых механизмов. Имеющаяся для этого контрольно-ремонтная белковая "машина" включает множество ферментов, организованных в сложнейшую метаболическую сеть. Она реагирует, регулирует и гарантирует стабильность ДНК и высокую точность ее копирования и воспроизводства. Стабильность гена есть скорее результат биохимической динамики, а не статической структуры молекулы ДНК. Например, специфический белок-нуклеаза удаляет небольшой сегмент ДНК, включающий поврежденный участок. Удаленный участок восстанавливается ДНК-полимеразой, использующей в качестве матрицы комплементарную цепь. Наконец, оставшийся одноцепочечный разрыв закрывается (соединяется) ДНК-лигазой.

Если ультрафиолетовый свет за счет фотохимического процесса повреждает один или 2 нуклеотида, то в клетках имеются механизмы, которые химически восстанавливают эти нуклеотиды путем обратного процесса, на основе комплементарной цепи нуклеотидов. Тиминовые димеры могут быть удалены фотореактивацией. Специфический фермент фотолиаза связывается с дефектным участком ДНК и после облучения расщепляет димер с образованием отдельных нуклеиновых оснований.

Третий механизм ― это ремонт в результате рекомбинации. В этом процессе участок, содержащий повреждение, пропускается во время репликации. Образующаяся брешь закрывается путем сдвига соответствующего сегмента из правильно реплицированной второй цепи. Новая брешь ликвидируется с участием особых ферментов — ДНК-полимераз и ДНК-лигаз. ДНК-полимераза I имеет вид кольцеобразной структуры, состоящая из нескольких одинаковых молекул белка. Она чинит повреждённую цепь ДНК. В завершение первоначальный дефект устраняется путем вырезания.

Без помощи белковой системы отслеживания, контроля и починки ошибок, копировальная машина дает 1 ошибку на 100 нуклеотидов, с помощью белковой системы контроля ошибок точность достигает до 1 ошибка на 10 миллионов нуклеотидов (182).

6.12. МУТАГЕНЕЗ

Перейти на страницу:

Похожие книги

100 великих героев
100 великих героев

Книга военного историка и писателя А.В. Шишова посвящена великим героям разных стран и эпох. Хронологические рамки этой популярной энциклопедии — от государств Древнего Востока и античности до начала XX века. (Героям ушедшего столетия можно посвятить отдельный том, и даже не один.) Слово "герой" пришло в наше миропонимание из Древней Греции. Первоначально эллины называли героями легендарных вождей, обитавших на вершине горы Олимп. Позднее этим словом стали называть прославленных в битвах, походах и войнах военачальников и рядовых воинов. Безусловно, всех героев роднит беспримерная доблесть, великая самоотверженность во имя высокой цели, исключительная смелость. Только это позволяет под символом "героизма" поставить воедино Илью Муромца и Александра Македонского, Аттилу и Милоша Обилича, Александра Невского и Жана Ланна, Лакшми-Баи и Христиана Девета, Яна Жижку и Спартака…

Алексей Васильевич Шишов

Биографии и Мемуары / История / Образование и наука