Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

Математические одеяния, в которые она рядится, действительно пугают, но она побуждает и более глубокую враждебность, которую мы начинаем ясно различать. Недоверие порождено опасностью, которая угрожает позициям старой философии. И действительно, каждая философия, в старом смысле слова, относится ли это к Платону, святому Фоме Аквинскому, Канту, Шеллингу, Гегелю, или к появившимся новым «метафизикам сущего», или к «диалектической философии», подвергается неумолимой критике со стороны новой логики как доктрины, не ложной по содержанию, но логически несостоятельной, а потому лишенной смысла».

Достаточно красноречиво. Поскольку мы завершили рассуждения о великих философах математики Кантом, мы вынуждены воздержаться от удовольствия открыть для себя гениальные мысли Гегеля по вопросам естествознания и математики. Чтобы компенсировать это упущение, опять же процитируем Карнапа: «Поскольку все законы логики тавтологичны и пусты [без фактического наполнения], они ничего не могут нам сказать о реально существующем мире. Любая диалектическая метафизика (и больше всего у Гегеля) по этой причине нелегитимна».

Естественно, не все философы едины во мнении по данному смертному приговору. Но только единицы из числа философов и прочих бросят вызов пророчеству (1925) философа из Оксфорда Жоада (С.E.M. Joad): «Если господин [Бертран] Рассел прав, большая часть философии лишена всякого смысла, если он не прав, мы можем продолжать надеяться выявить истину о вселенной методами, которые философия традиционно использует. Но прав он или нет, ясно, что человечество будет продолжать философствовать, хотя бы из-за одного только облагораживающего и расширяющего познание влияния философских размышлений на интеллект и глубоко запрятанный инстинкт любознательности, к которому они взывают». Не согласны были только те научные деятели, историки культуры и обозреватели человеческой природы, которых волновал вопрос «облагораживающего и расширяющего познание влияния философских размышлений на интеллект». Но в данной работе, как это часто случалось во время путешествия из прошлого в настоящее, несогласие может корениться во мнении, а вовсе не в знании.

Кто-то может разглядеть в этом беспрерывном потоке изменений теорий и убеждений безрадостную картину нестабильности и бесполезной борьбы. Их можно заверить, что наиболее стабильное состояние покоя – это смерть. Другие заметят, что каждое изменение замещает старое знание на новое, что вчера было истинно, больше таковым не является, и что должно наступить, возможно, будет отлично от всего, что существует сейчас. За исключением предположения о будущем, все остальное – исторический факт, и назовем мы это прогрессом или проклянем как регресс, мы не в силах исключить это из истории. Те же, кто принимает изменения, останутся довольны, а кто нет – опечалятся. Конечно, в изменениях нет такой уж трагедии, как пытаются представить нам те, кому они во вред и кто помешал бы им, если бы сумел. По крайней мере, это не стагнация. Если какая-то вечная истина из прошлого теперь становится ложной и невечной, будет только лучше, потому что устранятся сразу две ошибки. И если ни естествознание, ни математика не могут нигде найти конечность, то это философская истина. Пока еще ни одно из трех не было признано бесполезным. Кто возжелал стабильности в чем-либо, он должен ее искать где угодно, но только не здесь, если он, конечно, не нумеролог или математик-реалист. Остальные последуют за изменяющимся рисунком в калейдоскопе времени, поскольку каждый легкий поворот в ходе событий меняет цвета в новом и непредсказуемом сочетании, чуть замысловатее или красивее по сравнению с тем, что было ранее, или наоборот.

Что же сталось с математиком-реалистом, с которым мы начали данное путешествие в прошлое? Для него никаких значительных изменений не произошло. Все, что сегодня реально, практически осталось таким же, каким было в начале времен. Где-то и как-то числа и математические истины существуют, как они существовали раньше и как будут существовать всегда. Это не злое искажение верований реалиста. Только за первые четыре десятилетия XX века можно привести в пример сотни конфессий, уверенных в себе.

До сих пор слово имели только ученые мужи, давайте дадим возможность женщине высказать авторитетное мнение и процитируем отрывки из содержательного обращения (1925) выдающейся англичанки, геометра Хильды Фоэб Хадсон (Hilda Phoebe Hudson):

«Для всех нас, христиан, вера в то, что Бог есть истина, все, что истинно, есть факт в пользу Бога, а математика – лишь раздел теологии…»

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг