Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

Но даже в момент своего триумфа Учитель был печален. Он краснел при воспоминании о том, как перебирал струны арфы. Как можно было так недооценивать творческую мощь своего собственного разума? Конечно, теперь, спустя почти двадцать четыре столетия, когда уже слишком поздно хоть как-то повлиять на репутацию, он разобрался, что закон музыкальных интервалов есть не что иное, как эпистемологический трюизм, неизбежный результат применения метода, посредством которого рациональный ум передает содержание своего чувственного опыта. Почему он не заметил этого еще тогда, в Кротоне? Неужели он действительно был так глуп в том скандальном воплощении, когда пытался цивилизовать Милона и его жену? Вспыхнув от стыда, он внезапно понял, почему тот неуклюжий атлет и его ничем не примечательная маленькая жена так странно смотрели на него, когда застали за измерением длины вибрирующей части струны монохорда. На какой-то момент он представил их в своем простоватом невежестве принявших его за ненормального. Теперь, слишком поздно, спустя все те злополучные столетия, он понимал, что они промолчали из вежливости. Они не стали насмехаться над гостем, который выполнял всю эту ненужную работу, дабы обнаружить неизбежный результат простого рассуждения, который они-то знали интуитивно с младенческих времен, они лишь стояли, замерев, в дверном проеме, не произнося ни слова из опасения больно задеть чувства своего ненормального гостя. Как далеко зашло их гостеприимство! «Неудивительно, – простонал Учитель, – почему колесо погрузило меня во все безумие средневековой нумерологии. Я явно заслужил не меньше». И случилось то, что уже не раз случалось в истории развития естествознания, математики и философии: методы, идеи и представления, которые светила одного из направлений человеческого знания отставили в сторону, охотно подхватили видные представители другого. Такие возвраты к прошлому не обязательно подразумевают бесплодие или упадничество. Но беспристрастный наблюдатель задавался вопросом, знают ли новые сторонники древних кредо, сочтенных несостоятельными, хоть что-нибудь из прошлого, что вызывает у них прилив воодушевления. Возможно, это и к лучшему, что порой они ничего и не знают, – нет более эффективного средства, оказывающего парализующее действие, чем знание.

В частности, большая часть научной философии современных пифагорейцев, по всей видимости, проистекает из античного смешения чистой математики, которая является абстрактной логической системой, свободной от фактического содержания, и прикладной математики, которая частично предназначена для согласования с видимым и поддающимся наблюдению фактом и которая в этом смысле является эмпирической наукой. Тавтологическая пустота чистой математики перешла, возможно подсознательно, к математически сформулированным гипотезам и «законам» естественных наук; и с этой фактической пустотой, иллюзией либо непреложной неотвратимости, либо надуманно априорного характера математических истин, переплавляется во «все законы природы, которые обычно классифицируются как фундаментальные».

Эта цитата – читатель, вероятно, узнал ее – взята у Эддингтона и приводится в самом начале книги. Мы теперь вернемся к нашей отправной точке и вспомним несколько исторических деталей, которые, возможно, частично лежат в основе поразительного заключения, что те самые фундаментальные законы природы «можно предсказать целиком путем эпистемологических рассуждений. Они соответствуют априорному знанию и поэтому полностью субъективны». Кант, как мы видели, придерживался подобного мнения относительно математических истин, особенно таковых из геометрии; а теологические логики Средневековья почти так же воспринимали логику и зачатки естественных наук Аристотеля. Мы видели также, что математики XIX и XX столетий отказались от подобных убеждений по вполне обоснованной причине, что им противоречит современное знание. Это, однако, не должно вызвать предвзятое отношение к научному пифагореизму. Компетентные эксперты все еще продолжают свои споры, и, скорее всего, споры эти продолжатся еще долгие годы. Давайте, перед тем как перейти к выводам, раз и навсегда остановимся на том, что, если современные пифагорейцы правы, это наименее ожидаемое и предельно недосягаемое научное достижение за все двадцать пять столетий.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг