Конечно же, пятью аксиомами, сформулированными Евклидом, геометрия не ограничивается, поэтому не удивляйтесь, если на этих страницах вы найдете и другие. Ну а поскольку эта книга – отнюдь не учебник, мы, пожалуй, не будем тратить время на обстоятельное доказательство прописных истин и объяснение элементарных понятий, тем более с нуля. Я очень высокого мнения о своем читателе и считаю аксиомой, что он помнит со школы (или просто знает), что такое точка, прямая, угол, круг, периметр, площадь и так далее. К тому же я по мере сил буду избегать профессиональной лексики и всяких специфических и понятных, пожалуй, только математику, обозначений – ведь в центре нашего внимания не наука как таковая, но ее магия, способная затронуть струны любой, даже самой далекой от геометрии, души.
Я абсолютно уверен, например, что вы уже знаете (ну или готовы принять на веру), что градусов в любом круге ровно 360 и что обозначается это как 360°. А любой находящийся в этом круге угол, таким образом, будет равен значению от 0° до 360°. Представьте себе стрелки часов, сходящиеся в самом центре циферблата. В час дня или ночи стрелки располагаются так, будто «отрезают» от круга одну двенадцатую – значит, угол между ними равен 30°. В три часа стрелки «отрежут» уже четверть круга
и образуют угол 90° (такой угол называется
А вот одно очень полезное и часто встречаемое на практике обозначение: отрезок прямой, лежащий между точками
Две прямые при пересечении всегда образуют четыре угла. Взгляните на рисунок – что вы видите? Видите, что два прилежащих (смежных) угла (
Это справедливо в отношении всех четырех пар смежных углов, то есть
Если вычесть второе уравнение из первого, получится, что
А вычитание третьего уравнения из второго приведет нас к
Так у нас получаются еще две пары углов –
Осторожно, двери закрываются! Следующая остановка – доказательство того, что сумма углов абсолютно любого треугольника равна 180°. Но сначала – несколько фактов о параллельных прямых. Две прямые считаются параллельными, если они никогда – ни на видимом отрезке, ни в бесконечности – не пересекаются. Посмотрите на рисунок: вот две параллельные прямые (
Аксиома соответственных углов:
Соответственные углы всегда равны.В соединении с теоремой вертикальных углов аксиома говорит нам, что, согласно рисунку выше,
(Книги по математике в большинстве своем предлагают специальные названия для каждой из возможных пар: углы
Теорема:
Сумма углов любого треугольника равна 180°.Доказательство:
Возьмем треугольникОбразовавшиеся при этом углы