Получившиеся таким образом треугольники BAX
и CAX являются конгруэнтными согласно аксиоме по двум сторонам и лежащему между ними углу: BA = CA (что следует из понятия равнобедренности), ∠BAX = ∠CAX (что следует из понятия биссектрисы), а AX = AX (вернее, не так: отрезок AX не уникален, он появляется одновременно в двух треугольниках и не меняет свою длину). А так как BAX ≅ CAX, также равны будут и остальные стороны и углы, в том числе ∠B = ∠C, что и требовалось доказать.◻Отступление
То же можно доказать и с помощью теоремы конгруэнтности по трем сторонам. Для этого возьмем точку M
как середину отрезка BC, то есть чтобы BM было равно MC. Проведем линию по отрезку AM. Как и в предыдущем доказательстве, треугольники BAM и CAM будут конгруэнтными, потому что BA = CA (равнобедренность), AM = AM, а MB = MC (потому что точка M находится ровно посередине BC). Следовательно, согласно доказательству по трем парам сторон, BAM ≅ CAM, что говорит нам о равности лежащих в них углов, в том числе и ∠B = ∠C, что и требовалось доказать.Из факта конгруэнтности следует, что ∠BAM
= ∠CAM, следовательно, отрезок AM является биссектрисой. Более того, так как ∠BMA = ∠CMA и в сумме они дают 180°, каждый из них должен быть равен 90°, из чего следует вывод, что в равнобедренном треугольнике биссектриса, проложенная из угла A, будет перпендикуляром к основанию BC.Кстати, доказательство от обратного
в отношении равнобедренного треугольника тоже вполне эффективно, то есть если ∠B = ∠C, то AB = AC. Для этого, как и в самом первом доказательстве, проведем биссектрису из точки A в точку X. Утверждение, что BAX ≅ CAX, в этом случае следует из теоремы конгруэнтности по двум углам и прилежащей к одному из них стороне: ∠B = ∠C (согласно изначальному условию), ∠BAX = ∠CAX (согласно определению биссектрисы), а AX = AX. Значит, AB = AC, то есть треугольник ABC является равнобедренным.Теорему эту можно применить и к равностороннему треугольнику: если равны все
стороны, значит, равны и все углы. Следовательно, поскольку в сумме своей три угла дают 180°, имеем сопутствующую теорему.Сопутствующая теорема:
В равностороннем треугольнике каждый из углов равен 60°.Согласно теореме конгруэнтности по трем сторонам, если в треугольниках ABC
и DEF совпадают все стороны (то есть AB = DE, BC = EF, а CA = FD), их углы будут также совпадать (то есть ∠A = ∠D, ∠B = ∠E, а ∠C = ∠F). Верным ли будет обратное предположение, что, если в треугольниках ABC и DEF совпадают все углы, будут совпадать и их стороны? Конечно же, нет – просто посмотрите на рисунок:
Два треугольника с равными углами называются подобными
. Если треугольники ABC и DEF являются подобными (что обозначается как ∆ABC ~ ∆DEF или просто ABC ~ DEF), то ∠A = ∠D, ∠B = ∠E, а ∠C = ∠F. То есть один из них, по сути, является уменьшенной (или увеличенной) версией второго. Поэтому при ABC ~ DEF их стороны находятся в пропорциональной зависимости друг от друга по некоторому положительному масштабирующему коэффициенту k: DE = kAB, EF = kBC, а FD = kCA.Все это поможет нам ответить на второй вопрос нашей викторины, с которой мы начали главу. Давайте вспомним все условия. У нас есть две параллельные прямые: на нижней пролегает отрезок XY
, на верхней – точка P. Нашей задачей было найти такое местоположение точки P, при котором треугольник XYP имел бы наименьший периметр. Преобразуем правильный ответ в теорему.Теорема:
треугольник XYP имеет наименьший периметр, если точка P, которая расположена на прямой, параллельной его основанию, находится точно в середине отрезка XY.