(это пример для кубов). Сумма здесь будет, по идее, конечной, вот только простой формулы для ее точного вычисления пока никто не нашел.
Невероятно, но факт: π всплывает даже в задачах, связанных с вероятностью. Например, если вы выберете два случайных больших числа, вероятность того, что у них не будет ни одного общего простого множителя, составит чуть больше 60 %. Это приблизительно. А если точно, то 6/π² = 0,6079…. И то, что этот результат является обратной величиной для одной из посчитанных нами чуть выше бесконечных сумм – вовсе не совпадение.
Из чего состоит π?
К тому, что число π немного превышает 3, вы вполне можете прийти самостоятельно – для этого достаточно просто аккуратно все подсчитать. Но сначала нужно найти ответы на парочку вопросов. Во-первых, можно ли доказать соседство π и 3, не проводя специальных измерений? Во-вторых, существует ли для π какое-нибудь более удобоваримое представление (скажем, формула или простая дробь)?
На первый вопрос можно ответить, нарисовав окружность с радиусом 1, площадь который, как нам уже известно, равна π1² = π. На рисунке чуть ниже этот круг вписан в квадрат с длиной сторон, равной 2. Так как площадь квадрата очевидно больше площади круга, получаем, что π должно быть меньше 4.
С другой стороны, в круг можно вписать шестиугольник – так, чтобы все шесть его вершин были расположены на окружности, причем на равном расстоянии друг от друга. Каким будет
Можно на этом не останавливаться и попытаться еще сильнее сократить возможный разброс – для этого нам понадобятся полигоны с бóльшим количеством сторон. Так, если мы окружим единичный круг не квадратом, а шестиугольником, у нас получится доказать, что π < 2√
Еще раз: шестиугольник можно разделить на 6 равносторонних треугольников, каждый из них в свою очередь разбивается на 2 прямоугольных. Если длина меньшего катета равна
Следуя той же логике чередования «вписанных» и «описывающих» полигонов, состоящих последовательно из 12, 24, 48 и 96 сторон, один из величайших древнегреческих математиков Архимед сумел доказать, что 3,14103 < π < 3,14271, что сводится к немногим более простой формуле
Есть несколько простых дробей, которые более-менее соотносятся со значением π. Например,
Лично мне больше всего нравится последняя. И не только потому, что она совпадает с π в 6 из всего множества знаков после запятой, но и потому, что использует первые три нечетных числа (причем по два раза и по порядку!): две единицы, две тройки и две пятерки.