Итак, теперь мы знаем, что рентгеновские двойные – это действительно двойные, хоть мы и видим в них лишь одну звезду. Но откуда нам известно, что в некоторых случаях, таких, например, как Cyg X-1 (яркая рентгеновская двойная в созвездии Лебедь), компаньоном оптической звезды является черная дыра? Что, если, скажет скептик, это просто обычная звезда, но слишком тусклая и потому невидимая с Земли? Ответ на это скептическое замечание оказывается очень простым: для тусклой звезды невидимый компаньон имеет слишком большую массу. Чтобы обосновать этот ответ, нам понадобится привлечь и связать друг с другом некоторые другие наблюдения, законы орбитального движения Кеплера и теорию звездной эволюции. Начнем с наблюдений. Из доплеровских смещений спектральных линий мы можем вывести не только сам факт двойственности звезды, но и подробные свойства ее орбиты. Период колебаний спектральных линий в точности воспроизводит орбитальный период двойной системы. Точные измерения доплеровских смещений в течение одного периода позволяют вычислить эллиптичность орбиты. Амплитуда сдвигов линий дает нижний предел максимальной скорости звезды. (Он будет равен истинной максимальной скорости только в том случае, если мы видим орбиту «с ребра», но наклонение орбиты может быть определено только в очень редких случаях.) Соединяя все эти наблюдательные данные с кеплеровскими законами движения по орбите, мы можем оценить нижний предел суммарной массы обоих компаньонов двойной системы. И если мы сумеем определить массу видимой звезды, то сможем вычислить и массу ее невидимого компаньона. Тут нам на помощь приходит теория эволюции звезд. Она говорит, что если мы знаем температуру поверхности и светимость звезды (и то и другое можно определить непосредственно из наблюдений), то наши представления о звездной эволюции позволяют довольно точно оценить ее массу.
Жизнь звезды определяется противодействующими друг другу силами: направленной к ее центру силой тяготения и направленной вовне силой давления раскаленного газа. Это, вообще-то, верно и для холодных планет, в том числе и для нашей Земли, но в отличие от планет звезды слишком массивны для того, чтобы давление, создаваемое холодным веществом, уравновесило тяготение, по крайней мере на ранних стадиях их жизни[10]
. Зарождающаяся звезда представляет собой коллапсирующее (сжимающееся) облако газа, по преимуществу водорода. В процессе сжатия облака давление и температура в его ядре растут до тех пор, пока не начинается термоядерное горение: слияние атомов водорода. При этом выделяется колоссальное количество энергии в форме фотонов и нейтрино, которое продолжает разогревать ядро, и, наконец, тепловое давление становится достаточным для того, чтобы остановить сжатие. Вот в этот момент и рождается звезда. Со стороны это выглядит как достижение звездой состояния равновесия, но химический состав ядра непрерывно меняется по мере того, как водород в нем в процессе горения превращается в гелий. Что происходит в ядре звезды, когда запасы водорода в нем истощаются, зависит от массы звезды. Здесь мы не хотим слишком углубляться в разбор различных возможностей звездной эволюции. Скажем только, что самые массивные звезды (с массой от десяти до ста масс Солнца) проходят через множество фаз равновесия, разделенных моментами сжатия, в процессе которого в ядре каждый раз происходит рост температуры и давления, вследствие чего опять начинаются новые реакции термоядерного синтеза. Это длится до тех пор, пока не образуется ядро, состоящее в основном из атомов железа.Прежде чем обсуждать, что происходит на завершающих стадиях жизни звезд, мы вернемся к вопросу о том, как знание температуры поверхности и светимости звезды помогает нам определить ее массу. Пожалуй, проще подойти к этому вопросу с другой стороны: если мы знаем массу и химический состав звезды, мы можем вычислить температуру ее поверхности и светимость при помощи уравнений строения звезд. Здесь есть множество технических подробностей, но основные принципы следующие. Чтобы уравновесить силу тяжести, более массивной звезде требуется большее тепловое давление. Поэтому в ее недрах идет более интенсивное термоядерное горение, испускается больше фотонов, и звезда становится ярче. Самая высокая температура достигается в центре звезды, по мере удаления от центра она снижается, а на поверхности становится минимальной. Конкретное значение температуры поверхности звезды зависит от ее строения, но по крайней мере в начальной фазе водородного горения, которую астрономы называют фазой