В сущности, в области замкнутых времениподобных кривых работает машина времени. Вдалеке от сингулярности не существует никаких замкнутых времениподобных кривых, и если не считать сил отталкивания в районе сингулярности, пространство-время выглядит совершенно обычно. Однако существуют траектории движения (они не геодезические, так что вам понадобится ракетный двигатель) которые доставят вас в область замкнутых времениподобных кривых. Как только вы окажетесь там, вы сможете двигаться в любом направлении по координате t
, которая показывает время удаленного наблюдателя, но по вашему собственному времени вы все равно всегда будете двигаться вперед. А это значит, что вы можете отправиться в любой момент времени t, в который захотите, а потом вернуться в удаленную часть пространства-времени – и даже прибыть туда до того, как отправитесь. Конечно, теперь оживают все парадоксы, связанные с идеей путешествий во времени: например, что, если бы, совершив прогулку во времени, вы убедили ваше прошлое «я» отказаться от нее? Но могут ли существовать такие виды пространства-времени и как могут быть разрешены связанные с этим парадоксы – вопросы, выходящие за рамки этой книги. Однако, так же как и в случае с проблемой «голубой сингулярности» на внутреннем горизонте, общая теория относительности содержит указания на то, что области пространства-времени с замкнутыми времени-подобными кривыми неустойчивы: как только вы попытаетесь совместить с одной из этих кривых какое-то количество массы или энергии, эти области могут стать сингулярными. Более того, во вращающихся черных дырах, образующихся в нашей Вселенной, именно «голубая сингулярность» сама по себе может не дать образоваться области отрицательных масс (и всем керровским другим вселенным, в которые ведут белые дыры).Тем не менее то, что общая теория относительности допускает такие странные решения, выглядит интригующе. Их, конечно, легко объявить патологией, но не забудем, что сам Эйнштейн и многие его современники говорили то же самое о черных дырах.
Мы закончим эту главу кратким обсуждением заряженных черных дыр. Мы уже говорили о формуле «черные дыры не имеют волос»; другими словами, они не оставляют в структуре пространства-времени никаких сведений о том, что в них упало. Можно сказать, у них плохая память: они могут вспомнить только общую массу и момент импульса тел, которые они проглотили. Но что, если мы бросим в черную дыру электрон? И если черная дыра о нем тоже забудет, что произойдет с его электрическим зарядом? Разве его исчезновение не было бы нарушением закона сохранения заряда, священного правила физики частиц? Конечно, было бы. Но, к счастью, у черных дыр могут быть добавочные «волосы» для сил дальнодействия, с которыми связано сохранение заряда. Эти силы описываются теорией электромагнетизма. Решения уравнений электромагнетизма, найденных Максвеллом, в сочетании с уравнениями поля Эйнштейна, описывающими вращающиеся и заряженные черные дыры, дают так называемую метрику Ньюмена, однозначно определяемую массой, спином и электрическим зарядом. Вообще-то, решение, описывающее невращающуюся
заряженную черную дыру, было получено много лет назад: такой объект в честь его первооткрывателей называется черной дырой Рейснера – Нордстрёма. Это решение удалось получить намного раньше по той причине, что, как и в решении Шварцшильда, невращающееся пространство-время черной дыры Рейснера – Нордстрёма сферически симметрично, и поэтому уравнения поля в математическом отношении значительно проще. Интересно, что заряд, даже и сам по себе, сообщает внутренней структуре черных дыр свойства, подобные тем, которые обусловлены наличием момента импульса. В черных дырах Рейснера – Нордстрёма есть и внутренний горизонт, и «голубые сингулярности», и множественные связанные Вселенные. Однако в отсутствие вращения кольцевые сингулярности сжимаются в точку, и поэтому в пространстве-времени Рейснера−Нордстрёма нет областей отрицательной массы с замкнутыми времениподобными кривыми в них.