Представим себе теперь, что мы заменили каждый электрон гораздо более сложной квантовой системой со многими, а не только двумя квантовыми состояниями. Например, дали Алисе и Бобу бруски из чистого магния. Прежде чем Алиса и Боб разойдутся по своим делам в разные стороны, их бруски могут взаимодействовать, и мы договоримся, что при этом они приобретают определенное общее квантовое состояние. Как только Алиса и Боб расходятся, их магниевые бруски перестают взаимодействовать. Как и в случае с электронами, каждый брусок находится в неопределенном квантовом состоянии, хотя вместе, как мы считаем, они образуют состояние вполне определенное. (В этом обсуждении мы предполагаем, что Алиса и Боб способны перемещать свои магниевые бруски, никак не нарушая их внутреннего состояния, точно так же как прежде мы предполагали, что Алиса и Боб могли разделять свои запутанные электроны, не меняя их спинов.) Но различие между этим мысленным экспериментом и экспериментом с электронами заключается в том, что неопределенность квантового состояния каждого бруска огромна. Брусок вполне может приобрести больше квантовых состояний, чем число атомов во Вселенной. Вот тут-то на сцену и выходит термодинамика. Очень неточно определенные системы могут, тем не менее, иметь некоторые хорошо определенные макроскопические характеристики. Такой характеристикой является, например, температура. Температура – это мера того, с какой вероятностью любая часть системы имеет определенную среднюю энергию, причем более высокая температура соответствует большей вероятности иметь большую энергию. Другой термодинамический параметр – энтропия, по сути, равная логарифму количества состояний, которые система может принимать. Еще одна термодинамическая характеристика, которая была бы существенна для бруска магния, – это его суммарная намагниченность, то есть, в сущности, параметр, показывающий, насколько больше в бруске может быть электронов со спином, направленным вверх, чем со спином, направленным вниз.
Мы привлекли к нашему рассказу термодинамику как способ описывать системы, квантовые состояния которых точно неизвестны из-за их запутанности с другими системами. Термодинамика – мощный инструмент анализа таких систем, но ее создатели вовсе не предполагали такого ее применения. Сади Карно, Джеймс Джоуль, Рудольф Клаузиус были деятелями промышленной революции XIX столетия, и интересовал их самый практический из всех вопросов: как работают двигатели? Давление, объем, температура и теплота – плоть и кровь двигателей. Карно установил, что энергия в виде теплоты никогда не может быть полностью превращена в полезную работу вроде подъема грузов. Часть энергии всегда будет расходоваться впустую. Клаузиус внес основной вклад в создание идеи энтропии как универсального инструмента определения энергетических потерь в ходе любого процесса, связанного с теплотой. Главным его достижением было осознание того, что энтропия никогда не уменьшается – почти во всех процессах она растет. Процессы, в которых энтропия увеличивается, называются необратимыми – именно потому, что они не могут пойти вспять без уменьшения энтропии. Следующий шаг на пути развития статистической механики был сделан Клаузиусом, Максвеллом и Людвигом Больцманом (в числе многих других) – они показали, что энтропия является мерой беспорядка. Обычно чем больше вы действуете на что-то, тем больше вносите туда беспорядка. И даже если вы разработали процесс, целью которого является наведение порядка, в ходе его неизбежно образуется больше энтропии, чем будет уничтожено, – например, при выделении теплоты. Подъемный кран, который укладывает стальные балки в идеальном порядке, создает упорядоченность в смысле расположения балок, но в ходе его работы выделится столько тепла, что общая энтропия все равно растет. Но всё же отличие взгляда на термодинамику физиков XIX века от взгляда, связанного с квантовой запутанностью, не так велико, каким кажется. Каждый раз, когда система взаимодействует с внешним агентом, ее квантовое состояние запутывается с квантовым состоянием агента. Обычно эта запутанность ведет к увеличению неопределенности квантового состояния системы, другими словами, к росту числа квантовых состояний, в которых система может находиться. В результате взаимодействия с другими системами энтропия, определяемая в терминах количества доступных системе квантовых состояний, как правило, растет.